Citation: Han A-Li, Du Ping-Wu. Platinum-Cobalt Dinuclear Complex:Synthesis, Photophysical Properties and Visible Light-Driven Hydrogen Production from Water[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1703-1709. doi: 10.3969/j.issn.1001-4861.2013.00.309 shu

Platinum-Cobalt Dinuclear Complex:Synthesis, Photophysical Properties and Visible Light-Driven Hydrogen Production from Water

  • Received Date: 28 February 2013
    Available Online: 14 June 2013

    Fund Project: 国家自然科学基金(No.21271166)资助项目。 (No.21271166)

  • A platinum sensitizer-cobalt dinuclear complex, [Pt(tBu3tpy)([C≡C-C6H4N])-Co(dmgH)2PyCl, 5] (tBu3tpy=4,4',4"-tri(tert-butyl)-2,2':6',2"-terpyridine, C6H4N=4-pyridyl, dmgH=dimethylglyoxime, Py=pyridine), has been synthesized and characterized. The complex 5 shows absorption spectra in the visible region, which are assigned to mainly metal-to-ligand charge transfer (MLCT) character from the platinum sensitizer part. The cobalt moiety in complex 5 could quench the luminescence of the platinum part, indicating a possible process of intramolecular electron transfer. This dinuclear complex has been used for light-driven catalytic hydrogen production from water in the presence of triethanolamine (TEOA). The hydrogen production is affected by many factors, such as pH value and solvent. And the results show that this molecular catalyst could be decomposed to release the platinum based photosensitizer, as confirmed by absorption spectra and mass spectrometry.
  • 加载中
    1. [1]

      [1] Kalyanasundaram K, Kiwi J, Gratzel M. Helv. Chim. Acta, 1978,61:2720-2730

    2. [2]

      [2] Esswein A J, Nocera D G. Chem. Rev., 2007,107:4022-4047

    3. [3]

      [3] Goldsmith J I, Hudson W R, Lowry M S, et al. J. Am. Chem. Soc., 2005,127:7502-7510

    4. [4]

      [4] Du P W, Schneider J, Jarosz P, et al. J. Am. Chem. Soc., 2006,128:7726-7727

    5. [5]

      [5] Du P W, Schneider J, Jarosz P, et al. J. Phys. Chem. B, 2007, 111:6887-6894

    6. [6]

      [6] Du P W, Eisenberg R. Energy Environ. Sci., 2012,5:6012-6021

    7. [7]

      [7] Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem. Int. Ed., 2011,50:7238-7266

    8. [8]

      [8] Razavet M, Artero V, Fontecave M. Inorg. Chem., 2005,44: 4786-4795

    9. [9]

      [9] Baffert C, Artero V, Fontecave M. Inorg. Chem., 2007,46: 1817-1824

    10. [10]

      [10] Du P W, Knowles K, Eisenberg R. J. Am. Chem. Soc., 2008, 130:12576-12577

    11. [11]

      [11] Zhang P, Wang M, Dong J, et al. J. Phys. Chem. C, 2010, 114:15868-15874

    12. [12]

      [12] Hu X, Brunschwig B S, Peters J C. J. Am. Chem. Soc., 2007, 129:8988-8998

    13. [13]

      [13] Hu X, Cossairt B M, Brunschwig B S, et al. Chem. Commun., 2005,37:4723-4725

    14. [14]

      [14] Dempsey J L, Brunschwig B S, Winkler J R, et al. Acc. Chem. Res., 2009,42:1995-2004

    15. [15]

      [15] Ozawa H, Haga M A, Sakai K. J. Am. Chem. Soc., 2006, 128:4926-4927

    16. [16]

      [16] Rau S, Schfer B, Gleich D, et al. Angew. Chem. Int. Ed., 2006,45:6215-6218

    17. [17]

      [17] Elvington M, Brown J, Arachchige S M, et al. J. Am. Chem. Soc., 2007,129:10644-10645

    18. [18]

      [18] Fihri A, Artero V, Pereira A, et al. Dalton Trans., 2008,41: 5567-5569

    19. [19]

      [19] Fihri A, Artero V, Razavet M, et al. Angew. Chem. Int. Ed., 2008,47:564-567

    20. [20]

      [20] Zhang P, Wang M, Li C, et al. Chem. Commun., 2010,46: 8806-8808

    21. [21]

      [21] Artero V, Chavarot-Kerlidou M, Fontecave M. Angew. Chem. Int. Ed., 2011,50:7238-7266

    22. [22]

      [22] Lai S W, Chan M C W, Cheung K K, et al. Inorg. Chem., 1999,38:4262-4267

    23. [23]

      [23] Yam V W W, Tang R P L, Wong K M C, et al. Organometallics 2001,20:4476-4482.

    24. [24]

      [24] Yang Q Z, Wu L Z, Wu Z X, et al. Inorg. Chem., 2002,41: 5653-5655.

    25. [25]

      [25] Calvert J M, Caspar J V, Binstead R A, et al. J. Am. Chem. Soc., 1982,104:6620-6627

    26. [26]

      [26] Chakraborty S, Wadas T J, Hester H, et al. Inorg. Chem., 2005,44:6284-6293

    27. [27]

      [27] Chakraborty S, Wadas T J, Hester H, et al. Inorg. Chem., 2005,44:6865-6878

    28. [28]

      [28] McCormick T M, Han Z, Weinberg D J, et al. Inorg. Chem., 2011,50:10660-10666

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(0)
  • Abstract views(174)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return