Citation: CHEN Gong-De, ZHANG Wei-Xin, YANG Ze-Heng, WANG Qiang, YAO Hong-Xu. Lithium Storage Performances of TiO2 Nanotube Arrays on Copper Substrate[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1759-1768. doi: 10.3969/j.issn.1001-4861.2013.00.308 shu

Lithium Storage Performances of TiO2 Nanotube Arrays on Copper Substrate

  • Received Date: 26 February 2013
    Available Online: 10 June 2013

    Fund Project: 国家自然科学基金(No.21271058, 21176054, 20871038) (No.21271058, 21176054, 20871038)安徽省教育厅创新团队项目(TD200702)资助项目。 (TD200702)

  • Lithium storage performances of TiO2 nanotube arrays on copper substrate as electrodes in lithium-ion batteries were investigated. Amorphous TiO2 nanotube arrays were prepared via a sacrificial template method from outward coating of TiO2 and inward etching of Cu(OH)2 nanorod array templates on copper substrate. Anatase TiO2 nanotube arrays were obtained by post-heating the sample at 500 ℃ for 4 h. The samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The electrochemical performances of amorphous and anatase TiO2 nanotube arrays were investigated by galvanostatic charge-discharge measurements, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results indicate that compared with amorphous TiO2 nanotube arrays, anatase TiO2 nanotube arrays exhibit a superior rate capability and cycling performance due to their lower amounts of adsorbed water, higher crystallization, lower charge-transfer resistance, higher lithium-ion diffusion coefficient, and more stable one-dimensional tubular structure. They show an initial specific discharge capacity of 353 mAh·g-1 and 243 mAh·g-1 even after 40 cycles at 0.2C. At a high rate of 8C, their discharge capacity can reach 90 mAh·g-1.
  • 加载中
    1. [1]

      [1] Wagemaker M, Kearley G J, Well A A, et al. J. Am. Chem. Soc., 2003,125:840-848

    2. [2]

      [2] Macklin W J, Neat R J. Solid State Ionics, 1992,53:694-700

    3. [3]

      [3] Chen J S, Lou X W. Electrochem. Commun., 2009,11:2332-2335

    4. [4]

      [4] Bao S J, Bao Q L, Li C M, et al. Electrochem. Commun., 2007, 9:1233-1238

    5. [5]

      [5] Xu J W, Jia C H, Cao B, et al. Electrochim. Acta, 2007,52: 8044-8047

    6. [6]

      [6] Chen J S, Tan Y L, Li C M, et al. J. Am. Chem. Soc., 2010, 132:6124-6130

    7. [7]

      [7] Wang D W, Fang H T, Li F, et al. Adv. Funct. Mater., 2008,18:3787-3793

    8. [8]

      [8] Jiang J, Liu J P, Ding R M, et al. J. Phys. Chem. C, 2010,114: 929-932

    9. [9]

      [9] Wang J, Lin Z Q. Chem. Mater., 2008,20:1257-1261

    10. [10]

      [10] Yoriya S, Paulose M, Varghese O K, et al. J. Phys. Chem. C, 2007,111:13770-13776

    11. [11]

      [11] Lakshmi B B, Dorhout P K, Martin C R. Chem. Mater., 1997, 9:857-862

    12. [12]

      [12] Li X H, Liu W M, Li H L. Appl. Phys. A, 2005,80:317-320

    13. [13]

      [13] Tian Z R, Voigt J A, Liu J, et al. J. Am. Chem. Soc., 2003, 125:12384-12385

    14. [14]

      [14] Ortiz G F, Hanzu I, Djenizian T, et al. Chem. Mater., 2009,21: 63-67

    15. [15]

      [15] Fang H T, Liu M, Wang D W, et al. Nanotechnol., 2009,20:1-7

    16. [16]

      [16] Zhang W X, Chen G D, Yang Z H, et al. AIChE J., 2013,59: 2134-2144

    17. [17]

      [17] Zhang W X, Xu J, Yang Z H, et al. Chem. Phys. Lett., 2007, 434:256-259

    18. [18]

      [18] Xu J, Zhang W X, Yang Z H, et al. Inorg. Chem., 2008,47: 699-704

    19. [19]

      [19] Ortiz G F, Hanzu I, Knauth P, et al. Electrochim. Acta, 2009, 54:4262-4268

    20. [20]

      [20] Lou X W, Archer L A, Yang Z C. Adv. Mater., 2008,20:3987-4019

    21. [21]

      [21] Li H Q, Martha S K, Unocic R R, et al. J. Power Sources, 2012,218:88-92

    22. [22]

      [22] Pei B, Yao H X, Zhang W X, et al. J. Power Sources, 2012, 220:317-323

    23. [23]

      [23] Bard A J, Faulkner L R. Electrochemical Methods; Fundamentals and Applications. New York: John Wiley & Sons, Inc., 1980:378-387

    24. [24]

      [24] Krol R, Goossens A, Schoonman J. J. Phys. Chem. B, 1999, 103:7151-7159

    25. [25]

      [25] Wang J, Polleux J, Lim J, et al. J. Phys. Chem. C, 2007,111: 14925-14931.

    26. [26]

      [26] Cava R J, Murphy D W, Zahurak S. J. Solid State Chem., 1984,53:64-75

    27. [27]

      [27] Nuspl G, Yoshizawa K, Yamabe T. J. Mater. Chem., 1997,7: 2529-2536

    28. [28]

      [28] Shin J Y, Samuelis D, Maier J. Adv. Funct. Mater., 2011,21: 3464-347

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    5. [5]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    14. [14]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    15. [15]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    16. [16]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    17. [17]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    20. [20]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

Metrics
  • PDF Downloads(0)
  • Abstract views(181)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return