Citation: FENG Mei-Ling, HUANG Xiao-Ying. Recent Progress in Organic Hybrid Main Group Heterometallic Chalcogenides Based on Antimony[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1599-1608. doi: 10.3969/j.issn.1001-4861.2013.00.306 shu

Recent Progress in Organic Hybrid Main Group Heterometallic Chalcogenides Based on Antimony

  • Received Date: 29 January 2013
    Available Online: 30 May 2013

    Fund Project: 973项目(No.2012CB821702) (No.2012CB821702)国家自然科学基金(No.21171164 and 21221001) (No.21171164 and 21221001)福建省自然科学基金(No.2010J01056)资助项目。 (No.2010J01056)

  • In this review, the recent research progress of organic hybrid main group heterometallic chalcogenides based on antimony has been summarized. The structures and typical secondary building units of these compounds are described and classified. The roles of organic constituents as structure-directing agents or ligands are explored. The studies on their ion-exchange and photocatalytic properties are reviewed.
  • 加载中
    1. [1]

      [1] Huang X Y, Li J, Fu H X. J. Am. Chem. Soc., 2000,122(36): 8789-8790

    2. [2]

      [2] Huang X Y, Li J, Zhang Y, et al. J. Am. Chem. Soc., 2003, 125(23):7049-7055

    3. [3]

      [3] Huang X Y, Li J. J. Am. Chem. Soc., 2007,129(11):3157-3162

    4. [4]

      [4] Ki W, Li J, J. Am. Chem. Soc., 2008,130(26):8114-8115

    5. [5]

      [5] Yao W T, Yu S H, Pan L, et al. Small, 2005,1(3):320-325

    6. [6]

      [6] Todorov T K, Reuter K B, Mitzi D B. Adv. Mater., 2010,22 (20):E156-E159

    7. [7]

      [7] Deng Z X, Li L B, Li Y D. Inorg. Chem., 2003,42(7):2331-2341

    8. [8]

      [8] Zhao F H, Su Q, Xu N S, et al. J. Mater. Sci., 2006,41(5): 1449-1454

    9. [9]

      [9] Stephan H-O, Kanatzidis M G. J. Am. Chem. Soc., 1996,118 (48):12226-12227

    10. [10]

      [10] Sheldrick W S, Wachhold M. Angew. Chem. Int. Ed., 1997, 36:206-224

    11. [11]

      [11] Sheldrick W S, Wachhold M. Coord. Chem. Rev., 1998,176: 211-322

    12. [12]

      [12] Seidlhofer B, Antonova E, Wang J, et al. Z. Anorg. Allg. Chem., 2012,638(15):2555-2564

    13. [13]

      [13] Zhou J, Dai J, Bian G Q, et al. Coord. Chem. Rev., 2009, 253(9-10):1221-1247

    14. [14]

      [14] Ding N, Kanatzidis M G. Chem. Mater., 2007,19(16):3867-3869

    15. [15]

      [15] LIN Zhi-En(林之恩), YANG Guo-Yu(杨国昱), Chin. J. Struct. Chem.(Jiegou Huaxue), 2004,23(12):1388-1398

    16. [16]

      [16] Feng P Y, Bu X H, Zheng N F. Acc. Chem. Res., 2005,38 (4):293-303

    17. [17]

      [17] Li H, Laine A, O'Keeffe M, et al. Science, 1999,283(5405): 1145-1147

    18. [18]

      [18] Feng M L, Xie Z L, Huang X Y. Inorg. Chem., 2009,48(9): 3904-3906

    19. [19]

      [19] KONG De-Nian(孔德年), FENG Mei-Ling(冯美玲), YE Dong(叶冬), et al. Chin. J. Struct. Chem.(Jiegou Huaxue), 2010,629(6):905-913

    20. [20]

      [20] Lin Z E, Bu X H, Feng P Y. Microporous Mesoporous Mater., 2010,132(3):328-334

    21. [21]

      [21] Kanatzidis M G, Ding N. Nat. Chem., 2010,2(3):187-191

    22. [22]

      [22] Zhou J, Yin X H, Zhang F. Inorg. Chem., 2010,49(20):9671-9676

    23. [23]

      [23] Liu X. Inorg. Chem. Commun., 2011,14(2):437-439

    24. [24]

      [24] Zhou J, Liu X, An L T, et al. Dalton Trans., 2013,42:1735-1742

    25. [25]

      [25] Zhou J, An L, Zhang F. Inorg. Chem., 2011,50(2):415-417

    26. [26]

      [26] Zhou J, An L. CrystEngComm, 2011,13(19):5924-5928

    27. [27]

      [27] Feng M L, Li P X, Du K Z, et al. Eur. J. Inorg. Chem., 2011(26):3881-3885

    28. [28]

      [28] Wang K Y, Feng M L, Kong D N, et al. CrystEngComm, 2012,14(1):90-94

    29. [29]

      [29] Wang K Y, Feng M L, Li J R, et al. J. Mater. Chem. A, 2013,1:1709-1715

    30. [30]

      [30] Feng M L, Kong D N, Xie Z L, et al. Angew. Chem. Int. Ed., 2008,47(45):8623-8626

    31. [31]

      [31] Feng M L, Xiong W W, Ye D, et al. Chem. Asian J., 2010,5 (8):1817-1823

    32. [32]

      [32] Zhou J, An L, Liu X, et al. Dalton Trans., 2011,40(43): 11419-11424

    33. [33]

      [33] Powell A V, Mackay R. J. Solid State Chem., 2011,184(12): 3144-3149

    34. [34]

      [34] Quiroga-Gonzalez E, Nather C, Bensch W. Solid State Sci., 2010,12(7):1235-1241

    35. [35]

      [35] Feng M L, Ye D, Huang X Y. Inorg. Chem., 2009,48(17): 8060-8062

    36. [36]

      [36] Bag S, Trikalitis P N, Chupas P J, et al. Science, 2007,317 (5837):490-493

    37. [37]

      [37] Bag S, Arachchige I U, Kanatzidis M G. J. Mater. Chem., 2008,18(31):3628-3632

    38. [38]

      [38] Wachhold M, Rangan K K, Billinge S J L, et al. Adv. Mater., 2000,12(2):85-91

    39. [39]

      [39] Trikalitis P N, Rangan K K, Bakas T, et al. Nature, 2001, 410(6829):671-675

    40. [40]

      [40] Bag S, Kanatzidis M G. J. Am. Chem. Soc., 2010,132(42): 14951-14959

    41. [41]

      [41] Kanatzidis M G, Manos M J. Chem. Eur. J., 2009,15(19): 4779-4784

    42. [42]

      [42] Manos M J, Chrissafis K, Kanatzidis M G. J. Am. Chem. Soc., 2006,128(27):8875-8883

    43. [43]

      [43] Kudo A, Sekizawa M. Catal. Lett., 1999,58(4):241-243

    44. [44]

      [44] Kaga H, Saito K, Kudo A. Chem. Commun., 2010,46(21): 3779-3781

    45. [45]

      [45] Zheng N, Bu X, Vu H, et al. Angew. Chem. Int. Ed., 2005, 44:5299-5303

    46. [46]

      [46] Yu X H, Hou T J, Sun X H, et al. ChemPhysChem, 2012,13 (6):1514-1521

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    19. [19]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    20. [20]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

Metrics
  • PDF Downloads(0)
  • Abstract views(172)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return