Citation: CHEN Zhi-Gang, KUANG Xing-Yu, SONG Lin-Lin, TIAN Qi-Wei, HU Jun-Qing. Research Progress in NIR-Light-Driven Nanomaterials and Nanodevices[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1574-1590. doi: 10.3969/j.issn.1001-4861.2013.00.305 shu

Research Progress in NIR-Light-Driven Nanomaterials and Nanodevices

  • Received Date: 22 February 2013
    Available Online: 20 May 2013

    Fund Project: 国家自然科学基金(No.21171035和51272299) (No.21171035和51272299)上海市青年科技启明星计划(No.11QA140010) (No.11QA140010)

  • Near-infrared (NIR) light has great potential in biomedical application due to its advantages such as deep penetration depth and low photodamage to biological tissues. If we want to use NIR light that has entered animal body, for in-vivo diagnosis and therapeutic intervention, a prerequisite is to obtain nanomaterials and/or nanodevices that can absorb or convert NIR light. This paper reviews the recent research progress in NIR-light-driven nanomaterials and/or nanodevices, including up-converting rare-earth nanophosphors, 980-nm laser-driven generator, and photothermal nanoagents. The main attention has been given to the biological application of these nanomaterials and/or nanodevices. At last, the present problems and the future development trends are pointed out.
  • 加载中
    1. [1]

      [1] Kobayashi H, Ogawa M, Alford R, et al. Chem. Rev., 2010, 110(5):2620-2640

    2. [2]

      [2] Wang F, Liu X. Chem. Soc. Rev., 2009,38(4):976-989

    3. [3]

      [3] Zhou J, Liu Z, Li F. Chem. Soc. Rev., 2012,41(3):1323-1349

    4. [4]

      [4] Xu Y, Heberlein W E, Mahmood M, et al. J. Mater. Chem., 2012,22(38):20128-20142

    5. [5]

      [5] Chen Z G, Zhang L S, Sun Y G, et al. Adv. Funct. Mater., 2009,19(23):3815-3820

    6. [6]

      [6] Zhang L, Tian Q, Xu W, et al. J. Mater. Chem., 2012,22(35): 18156-18163

    7. [7]

      [7] Tian Q W, Tang M H, Sun Y G, et al. Adv. Mater., 2011,23 (31):3542-3547

    8. [8]

      [8] Tian Q W, Jiang F R, Zou R J, et al. ACS Nano, 2011,5(12): 9761-9771

    9. [9]

      [9] Chen Z G, Wang Q, Wang H L, et al. Adv. Mater., 2013,25 (14):2095-2100

    10. [10]

      [10] Chen Z G, Chen H L, Hu H, et al. J. Am. Chem. Soc., 2008,130(10):3023-3029

    11. [11]

      [11] Chen Z G, Tian Q W, Song Y L, et al. J. Alloys Compd., 2010,506(2):L17-L21

    12. [12]

      [12] CHEN Zhi-Gang(陈志钢), SONG Yue-Lin(宋岳林), TIAN Qi-Wei(田启威), et al. Mod. Chem. Ind.(Xiandai Huagong), 2010,30(07):27-33

    13. [13]

      [13] Song Y L, Tian Q W, Zou R J, et al. J. Alloys Compd., 2011,509(23):6539-6544

    14. [14]

      [14] GAO Yuan(高渊), CAO Tian-Ye(曹天野), LI Fu-You(李富 友). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012, 28(10):2043-2048

    15. [15]

      [15] Heer S, Kompe K, Gudel H U, et al. Adv. Mater., 2004,16 (23/24):2102-2105

    16. [16]

      [16] ZOU Shao-Yu(邹少瑜), MENG Jian-Xin(孟建新). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(06):1138-1142

    17. [17]

      [17] WANG Neng-Li(王能利), WANG Kun(王坤), YANG Liu(杨 柳), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(04):619-624

    18. [18]

      [18] QU Yu-Qiu(曲玉秋), LI Mei-Cheng(李美成). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(10):1815-1819

    19. [19]

      [19] Li Z, Zhang Y. Angew. Chem. Int. Ed., 2006,45(46):7732-7735

    20. [20]

      [20] Wang X, Zhuang J, Peng Q, et al. Nature, 2005,437(7055): 121-124

    21. [21]

      [21] Wang L, Li Y. Nano Lett., 2006,6(8):1645-1649

    22. [22]

      [22] Wang L, Li Y. Chem. Mater., 2007,19(4):727-734

    23. [23]

      [23] Wang G, Peng Q, Li Y. J. Am. Chem. Soc., 2009,131(40): 14200-14201

    24. [24]

      [24] Zhang Y W, Sun X, Si R, et al. J. Am. Chem. Soc., 2005, 127(10):3260-3261

    25. [25]

      [25] Mai H X, Zhang Y W, Si R, et al. J. Am. Chem. Soc., 2006, 128(19):6426-6436

    26. [26]

      [26] Boyer J C, Vetrone F, Cuccia L A, et al. J. Am. Chem. Soc., 2006,128(23):7444-7445

    27. [27]

      [27] Zhang F, Wan Y, Yu T, et al. Angew. Chem. Int. Ed., 2007, 46(42):7976-7979

    28. [28]

      [28] Wang F, Han Y, Lim C S, et al. Nature, 2010,463(7284): 1061-1065

    29. [29]

      [29] Yi G S, Chow G M. Adv. Funct. Mater., 2006,16(18):2324-2329

    30. [30]

      [30] Li Z, Zhang Y, Jiang S. Adv. Mater., 2008,20(24):4765-4769

    31. [31]

      [31] Naccache R, Vetrone F, Mahalingam V, et al. Chem. Mater., 2009,21(4):717-723

    32. [32]

      [32] Yi G S, Chow G M. Chem. Mater., 2007,19(3):341-343

    33. [33]

      [33] Wang L Y, Yan R X, Hao Z Y, et al. Angew. Chem. Int. Ed., 2005,44(37):6054-6057

    34. [34]

      [34] Xiong L Q, Chen Z G, Yu M X, et al. Biomaterials, 2009,30 (29):5592-5600

    35. [35]

      [35] Barone V, Cacelli I, Ferretti A, et al. Phys. Chem. Chem. Phys., 2009,11(45):10644-10656

    36. [36]

      [36] Hamdi M. Nanotechnology, 2009,20(48):485501

    37. [37]

      [37] Kalantari-Nejad R, Bahrami M, Rafii-Tabar H, et al. Nanotechnology, 2010,21(44):445501

    38. [38]

      [38] Liu M, Zentgraf T, Liu Y, et al. Nat. Nanotech., 2010,5(8): 570-573

    39. [39]

      [39] Wang X D, Song J H, Liu J, et al. Science, 2007,316(5821): 102-105

    40. [40]

      [40] Wang X D, Gao Y F, Wei Y G, et al. Nano Research, 2009, 2(3):177-182

    41. [41]

      [41] Cha S, Kim S M, Kim H, et al. Nano Lett., 2011,11(12): 5142-5147

    42. [42]

      [42] Wang Z L. Adv. Mater., 2012,24(2):280-285

    43. [43]

      [43] Yang R, Qin Y, Li C, et al. Nano Lett., 2009,9(3):1201-1205

    44. [44]

      [44] Li Z, Zhu G A, Yang R S, et al. Adv. Mater., 2010,22(23): 2534-2537

    45. [45]

      [45] Pan C, Wu H, Wang C, et al. Adv. Mater., 2008,20(9):1644-1648

    46. [46]

      [46] Pan C, Fang Y, Wu H, et al. Adv. Mater., 2010,22(47):5388-5392

    47. [47]

      [47] Gao F, Viry L, Maugey M, et al. Nat. Commun., 2010,1:2

    48. [48]

      [48] Hansen B J, Liu Y, Yang R S, et al. ACS Nano, 2010,4(7): 3647-3652

    49. [49]

      [49] Cinquin P, Gondran C, Giroud F, et al. PLoS ONE, 2010,5 (5):e10476

    50. [50]

      [50] Gratzel M. Nature, 2001,414(6861):338-344

    51. [51]

      [51] Gur I, Fromer N A, Geier M L, et al. Science, 2005,310 (5747):462-465

    52. [52]

      [52] Chen Z G, Li F Y, Huang C H. Curr. Org. Chem., 2007,11 (14):1241-1258

    53. [53]

      [53] Chen Z G, Li F Y, Yang H, et al. Chemphyschem, 2007,8 (9):1293-1297

    54. [54]

      [54] Chen Z G, Tang Y W, Yang H, et al. J. Power Sources, 2007,171(2):990-998

    55. [55]

      [55] Chen Z G, Yang H, Li X H, et al. J. Mater. Chem., 2007,17 (16):1602-1607

    56. [56]

      [56] Liu H, Tang J, Kramer I J, et al. Adv. Mater., 2011,23(33):3832-3837

    57. [57]

      [57] Wang Y C, Huang K C, Dong R X, et al. J. Mater. Chem., 2012,22(14):6982-6989

    58. [58]

      [58] Wilson J R, Mancini D M, McCully K, et al. Circulation, 1989,80(6):1668-1674

    59. [59]

      [59] Chance B, Dait M T, Zhang C D, et al. Am. J. Physiol., 1992,262(3):C766-C775

    60. [60]

      [60] Wu J L, Chen F C, Chuang M K, et al. Energ. Environ. Sci., 2011,4(9):3374-3378

    61. [61]

      [61] Chen W R, Adams R L, Bartels K E, et al. Cancer Lett., 1995,94(2):125-131

    62. [62]

      [62] Chen W R, Adams R L, Heaton S, et al. Cancer Lett., 1995, 88(1):15-19

    63. [63]

      [63] Chen W R, Adams R L, Higgins A K, et al. Cancer Lett., 1996,98(2):169-173

    64. [64]

      [64] Lucroy M D, Chen W R, Ridgway T D, et al. J. X-Ray Sci. Technol., 2002,10(3-4):237-243

    65. [65]

      [65] Yu J, Yaseen M A, Anvari B, et al. Chem. Mater., 2007,19 (6):1277-1284

    66. [66]

      [66] Yu J, Javier D, Yaseen M A, et al. J. Am. Chem. Soc., 2010,132(6):1929-1938

    67. [67]

      [67] Zheng X, Xing D, Zhou F, et al. Mol. Pharm., 2011,8(2): 447-456

    68. [68]

      [68] Peng C L, Shih Y H, Lee P C, et al. ACS Nano, 2011,5(7): 5594-5607

    69. [69]

      [69] Yang J, Choi J, Bang D, et al. Angew. Chem. Int. Ed., 2011, 50(2):441-444

    70. [70]

      [70] Chen M, Fang X, Tang S, et al. Chem. Commun., 2012,48 (71):8934-8936

    71. [71]

      [71] Zha Z, Yue X, Ren Q, et al. Adv. Mater., 2013,25(5):777-782

    72. [72]

      [72] Cheng L, Yang K, Chen Q, et al. ACS Nano, 2012,6(6): 5605-5613

    73. [73]

      [73] QU Xiao-Chao(屈晓超), LIANG Jia-Ming(梁佳明), YAO Cui-Ping(姚翠萍), et al. Chin. J. Lasers(Zhongguo Jiguang), 2007,34(11):1459-1465

    74. [74]

      [74] Nam J, Won N, Jin H, et al. J. Am. Chem. Soc., 2009,131 (38):13639-13645

    75. [75]

      [75] Sharma P, Brown S C, Singh A, et al. J. Mater. Chem., 2010,20(25):5182-5185

    76. [76]

      [76] Umeda Y, Kojima C, Harada A, et al. Bioconjugate. Chem., 2010,21(8):1559-1564

    77. [77]

      [77] Wang S T, Chen K J, Wu T H, et al. Angew. Chem. Int. Ed., 2010,49(22):3777-3781

    78. [78]

      [78] Buchkremer A, Linn M J, Reismann M, et al. Small, 2011,7 (10):1397-1402

    79. [79]

      [79] Khlebtsov N, Dykman L. Chem. Soc. Rev., 2011,40(3):1647-1671

    80. [80]

      [80] Van de Broek B, Devoogdt N, D'Hollander A, et al. ACS Nano, 2011,5(6):4319-4328

    81. [81]

      [81] Huang X H, El-Sayed I H, Qian W, et al. J. Am. Chem. Soc., 2006,128(6):2115-2120

    82. [82]

      [82] Li J L, Day D, Gu M. Adv. Mater., 2008,20(20):3866-3871

    83. [83]

      [83] von Maltzahn G, Centrone A, Park J H, et al. Adv. Mater., 2009,21(31):3175-3180

    84. [84]

      [84] Ungureanu C, Kroes R, Petersen W, et al. Nano Lett., 2011, 11(5):1887-1894

    85. [85]

      [85] Wang J, Zhu G, You M, et al. ACS Nano, 2012,6(6):5070-5077

    86. [86]

      [86] YANG Yu-Dong(杨玉东), XU Jing-Hua(徐菁华), YANG Lin-Mei(杨林梅), et al. Laser Optoelectronics Prog.(Jiguang Yu Guangdianzixue Jinzhan), 2010,47(7):071702

    87. [87]

      [87] MA Zhan-Fang(马占芳), TIAN Le(田乐), DI Jing(邸静), et al. Prog. Chem.(Huaxue Jinzhan), 2009,21(1):134-142

    88. [88]

      [88] Zhang Z, Wang L, Wang J, et al. Adv. Mater., 2012,24(11): 1418-1423

    89. [89]

      [89] Yang J, Lee J, Kang J, et al. Adv. Mater., 2009,21(43):4339-4342

    90. [90]

      [90] Ke H T, Wang J R, Dai Z F, et al. Angew. Chem. Int. Ed., 2011,50(13):3017-3021

    91. [91]

      [91] ZHANG Hao-Ran(张浩然), MAN Shi-Qing(满石清), XU Meng(徐萌), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(10):1768-1775

    92. [92]

      [92] You J, Zhang G D, Li C. ACS Nano, 2010,4(2):1033-1041

    93. [93]

      [93] Preciado-Flores S, Wang D C, Wheeler D A, et al. J. Mater. Chem., 2011,21(7):2344-2350

    94. [94]

      [94] Chen J Y, Wang D L, Xi J F, et al. Nano Lett., 2007,7(5): 1318-1322

    95. [95]

      [95] Yavuz M S, Cheng Y, Chen J, et al. Nat. Mater., 2009,8(12): 935-939

    96. [96]

      [96] Chen J Y, Glaus C, Laforest R, et al. Small, 2010,6(7):811-817

    97. [97]

      [97] Ye E Y, Win K Y, Tan H R, et al. J. Am. Chem. Soc., 2011,133(22):8506-8509

    98. [98]

      [98] Yuan H, Fales A M, Vo-Dinh T. J. Am. Chem. Soc., 2012, 134(28):11358-11361

    99. [99]

      [99] Huang X, Tang S, Yang J, et al. J. Am. Chem. Soc., 2011, 133(40):15946-15949

    100. [100]

      [100] Huang X, Tang S, Liu B, et al. Adv. Mater., 2011,23(30): 3420-3425

    101. [101]

      [101] Kam N W S, O'Connell M, Wisdom J A, et al. Proc. Natl. Acad. Sci. USA., 2005,102(33):11600-11605

    102. [102]

      [102] Kim J W, Galanzha E I, Shashkov E V, et al. Nat. Nanotech., 2009,4(10):688-694

    103. [103]

      [103] Moon H K, Lee S H, Choi H C. ACS Nano, 2009,3(11): 3707-3713 [104] Fisher J W, Sarkar S, Buchanan C F, et al. Cancer Res., 2010,70(23):9855-9864

    104. [104]

      [105] Robinson J T, Welsher K, Tabakman S M, et al. Nano Res., 2010,3(11):779-793

    105. [105]

      [106] Liu X W, Tao H Q, Yang K, et al. Biomaterials., 2011,32 (1):144-151

    106. [106]

      [107] Markovic Z M, Harhaji-Trajkovic L M, Todorovic-Markovic B M, et al. Biomaterials., 2011,32(4):1121-1129

    107. [107]

      [108] Whitney J R, Sarkar S, Zhang J F, et al. Laser. Surg. Med., 2011,43(1):43-51

    108. [108]

      [109] Wang X, Wang C, Cheng L, et al. J. Am. Chem. Soc., 2012,134(17):7414-7422

    109. [109]

      [110] Antaris A L, Robinson J T, Yaghi O K, et al. ACS Nano, 2013,7(4):3644-3652

    110. [110]

      [111] Yang K, Zhang S, Zhang G X, et al. Nano Lett., 2010,10 (9):3318-3323

    111. [111]

      [112] Robinson J T, Tabakman S M, Liang Y Y, et al. J. Am. Chem. Soc., 2011,133(17):6825-6831

    112. [112]

      [113] Li M, Yang X, Ren J, et al. Adv. Mater., 2012,24(13):1722-1728

    113. [113]

      [114] Yang K, Hu L, Ma X, et al. Adv. Mater., 2012,24(14):1868-1872

    114. [114]

      [115] Yang K, Gong H, Shi X, et al. Biomaterials., 2013,34(11): 2787-2795

    115. [115]

      [116] Yang K, Feng L, Shi X, et al. Chem. Soc. Rev., 2013,42 (2):530-547

    116. [116]

      [117] Wang Y, Wang K, Zhao J, et al. J. Am. Chem. Soc., 2013, 135(12):4799-4804

    117. [117]

      [118] Li Y B, Lu W, Huang Q A, et al. Nanomedicine, 2010,5 (8):1161-1171

    118. [118]

      [119] Zhou M, Zhang R, Huang M A, et al. J. Am. Chem. Soc., 2010,132(43):15351-15358

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    3. [3]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    9. [9]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    16. [16]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    17. [17]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    18. [18]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    19. [19]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(0)
  • Abstract views(198)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return