Citation: YUAN Ye, REN Hao, SUN Fu-Xing. γ-Cyclodextrin Porous Aromatic Frameworks Applied to Capture CO2[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1645-1648. doi: 10.3969/j.issn.1001-4861.2013.00.297 shu

γ-Cyclodextrin Porous Aromatic Frameworks Applied to Capture CO2

  • Received Date: 19 January 2013
    Available Online: 17 May 2013

    Fund Project: 吉林大学“挑战杯”大学生课外学术科技作品竞赛项目(No.450060487477)资助项目。 (No.450060487477)

  • According to the famous chemist Yaghi's theory, hydroxyl group possesses the specific adsorption for CO2. In this paper, we report the synthesis of novel γ-cyclodextrin porous aromatic frameworks (CD-PAF-1) based on γ-cyclodextrin as building units with hydroxyl dehydration reaction. The material was characterized by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), CO2 and N2 gas sorption. A TG analysis showed that CD-PAF-1 is thermally stable up to 220 ℃ in air. CD-PAF-1 also has a high chemical stability and cannot be dissolved or decomposed in common solvents or concentrated hydrochloric acid. As we designed, hydroxyl groups in the skeletons adsorb a large amount of CO2. However, they do not adsorb N2 gas molecules. According to these features, CD-PAF-1 may be applied to capture and separate CO2 in industry.
  • 加载中
    1. [1]

      [1] Ben T, Pei C Y, Zhang D L, et al. Energy Environ. Sci., 2011,4:3991-3999

    2. [2]

      [2] LI Jin-Li(李锦丽), FU Ning(付宁), LÜ Gong-Xuan(吕功煊), Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26 (12):2175-2181

    3. [3]

      [3] YANG Jun-Song(杨俊松), CHEN Qian-Wang(陈乾旺), Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2008,24(3): 439-445

    4. [4]

      [4] WANG Yin-Jie(王银杰), QI Lu(其鲁), WANG Xiang-Yun (王祥云). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2003,19(5):531-534

    5. [5]

      [5] HE Yong-Gang(何永刚), CHUN Yuan(淳远), ZHU Jian-Hua (朱建华), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2000,16(3):477-484

    6. [6]

      [6] Matsuda R, Kitaura R, Kitagawa S, et al. Nature, 2005,436: 238-241

    7. [7]

      [7] Chen B L, Liang C D, Yang J, et al. Angew. Chem. Int. Ed., 2006,45:1390-1393

    8. [8]

      [8] Seo J S, Whang D, Lee H, et al. Nature, 2000,404:982-986

    9. [9]

      [9] Chan-Thaw C E, Villam A, Katekomol P, et al. Nano Lett., 2010,10:537-541

    10. [10]

      [10] Schmidt J, Weber J, Epping J, et al. Adv. Mater., 2009,21: 702-705

    11. [11]

      [11] Cté A P, Benin A I, Ockwig N W, et al. Science, 2005,310: 1166-1170

    12. [12]

      [12] El-Kaderi H M, Hunt J R, Mendoza-Cortés J L, et al. Science, 2007,316:268-372

    13. [13]

      [13] Tilford R W, Gemmill W R, Loye H, et al. Chem. Mater., 2006,18:5296-5301

    14. [14]

      [14] Jiang J X, Su F, Niu H, et al. Chem. Commun., 2008,44: 486-488

    15. [15]

      [15] Jiang J X, Su F, Trewin A, et al. Angew Chem. Int. Ed., 2007, 46:8574-8578

    16. [16]

      [16] Dawson R, Laybourn A, Clowes R, et al. Macromolecules, 2009,42:8809-8816

    17. [17]

      [17] Wood C D, Tan B, Trewin A, et al. Chem. Mater., 2007,19: 2034-2048

    18. [18]

      [18] Kuhn P, Antonietti M, Thomas A. Angew Chem. Int. Ed., 2008,47:3450-3453

    19. [19]

      [19] Ben T, Ren H, Ma S Q, et al. Angew Chem. Int. Ed., 2009, 48:9457-9460

    20. [20]

      [20] Ren H, Ben T, Wang E S, et al. Chem. Commun., 2010,46: 291-293

    21. [21]

      [21] Yuan Y, Sun F X, Ren H, et al. J. Mater. Chem., 2011,21: 13498-13502

    22. [22]

      [22] Yuan Y, Ren H, Sun F X, et al. J. Mater. Chem., 2012,22: 24558-24562

    23. [23]

      [23] YUAN Ye(元野), YAN Zuo-Jun(闫卓君), REN Hao(任浩), et al. Acta Chimica Sinica (Huaxue Xuebao) 2012,70(13): 1446-1450

    24. [24]

      [24] Yuan Y, Ren H, Sun F X, et al. J. Phys. Chem. C, 2012, 116:26431-26435

    25. [25]

      [25] YANG Hao(杨皓), GONG Mao-Chu(龚茂初), CHEN Yao-Qiang(陈耀强). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(6):1053-1058

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    11. [11]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    12. [12]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    13. [13]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    14. [14]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    15. [15]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    18. [18]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    19. [19]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    20. [20]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

Metrics
  • PDF Downloads(0)
  • Abstract views(166)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return