Citation: FENG Hao, DU Jing, HAN Xiao-Peng, CHENG Fang-Yi, CHEN Jun. Sol-Gel Synthesis of Perovskite La1-xCaxMnO3(x=0~0.4) Nanoparticles for Electrocatalytic Oxygen Reduction[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1617-1625. doi: 10.3969/j.issn.1001-4861.2013.00.286 shu

Sol-Gel Synthesis of Perovskite La1-xCaxMnO3(x=0~0.4) Nanoparticles for Electrocatalytic Oxygen Reduction

  • Received Date: 3 April 2013
    Available Online: 10 May 2013

    Fund Project: 国家自然科学基金(No.21231005) (No.21231005)863课题(2011AA050704) (2011AA050704)973项目(2011CB935900) (2011CB935900)

  • In this work, a series of La1-xCaxMnO3 perovskite nanoparticles were prepared through a sol-gel method and investigated as catalysts for the oxygen reduction reaction (ORR). The XRD, SEM and TEM characterization demonstrated high crystallinity of the synthesized particles having diameters of about 40 nm. The crystal structure was determined by Rietveld refinement, indicating variation of the lattice parameters with the amount of substituted Ca. The electrocatalytic properties of the samples were studied using rotating-disk and rotating ring-disk electrode techniques in KOH aqueous solution. Investigations on the composition-performance relationship of La1-xCaxMnO3 perovskites revealed that mixed Mn valence and medium Mn-O bond length favored the ORR electrocatalysis. Among the La1-xCaxMnO3 series, La0.7Ca0.3MnO3 exhibited outstanding ORR activity, enabled an apparent 4-electron pathway and showed superior durability compared to the benchmark carbon-supported Pt nanoparticles. Furthermore, metal-air cells assembled with La0.7Ca0.3MnO3 could deliver high charge and discharge capacity with flat plateaus. The considerable catalytic performances of La1-xCaxMnO3 nanoparticles indicate their promising application as low-cost and high-abundance catalysts in alkaline fuel cells and metal-air batteries.
  • 加载中
    1. [1]

      [1] Bruce P G, Freunberger S A, Hardwick L J, et al. Nat. Mater., 2012,11:19-29

    2. [2]

      [2] Suntivich J, Gasteiger H A, Yabuuchi N, et al. Nat. Chem., 2011,3:546-550

    3. [3]

      [3] Cheng F Y, Chen J. Chem. Soc. Rev., 2012,41:2172-2192

    4. [4]

      [4] Zhao Y L, Xu L, Mai L Q, et al. Proc. Natl. Acad. Sci. U.S. A, 2012,109:19569-19574

    5. [5]

      [5] Neburchilov V, Wang H J, Martin J J, et al. J. Power Sources, 2010,195:1271-1291

    6. [6]

      [6] CHENG Fang-Yi(程方益), CHEN Jun(陈军). Acta Chim. Sin. (Huaxue Xuebao), 2013,71:473-477

    7. [7]

      [7] HAN Hong-Tao(韩红涛), TANG You-Gen(唐有根). Chin. J. Power Sources (Dianyuan Jishu), 2006,30:454-457

    8. [8]

      [8] Sunarso J, Torriero A A, Zhou W, et al. J. Phys. Chem. C, 2012,116:5827-5834

    9. [9]

      [9] ZHANG Zhong-Lin(张忠林), YUAN Juan-Ning(员娟宁), SUN Yan-Ping(孙彦平), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2007,27(12):2413-2418

    10. [10]

      [10] Liang Y Y, Wang H L, Zhou J G, e al. J. Am. Chem. Soc., 2012,134:3517-3523

    11. [11]

      [11] Benbow E M, Kelly S P, Zhao L, et al. J. Phys. Chem. C, 2011,115:22009-22017

    12. [12]

      [12] Cheng F Y, Shen J, Peng B, et al. Nat. Chem., 2011,3:79-84

    13. [13]

      [13] Oh S H, Nazar L F. Adv. Energy Mater., 2012,2:903-910

    14. [14]

      [14] Winther-Jensen B, Winther-Jensen O, Forsyth M, et al. Science, 2008,321(5889):671-674

    15. [15]

      [15] Suntivich J, Gasteiger H A, Yabuuchi N, et al. J. Electrochem. Soc., 2010,157:B1263-B1268

    16. [16]

      [16] Débart A, Paterson A J, Bao J, et al. Angew. Chem. Int. Ed., 2008,47:4521-4524

    17. [17]

      [17] Cheng F Y, Chen J. Nat. Chem., 2012,4:962-963

    18. [18]

      [18] LI Dan-Lin(李丹林), LI Shang(李赏), PAN Mu(潘牧). J. Hubei Univ. (Hubei Daxue Xuebao), 2011,33:98-102

    19. [19]

      [19] LIN Sheng-Ling(林生岭), XU Shao-Fen(徐绍芬), CHENG Ye(成烨), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2005,21(11):1637-1642

    20. [20]

      [20] HU He-He(胡合合), LUO Yong-Chun(罗永春), KANG Long (康龙), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(10):2130-2138

    21. [21]

      [21] Hyodo T, Hayashi M, Miura N, et al. J. Electrochem. Soc., 1996,143:L266-L267

    22. [22]

      [22] Niu Y J, Zhou W, Sunarso J, et al. J. Mater. Chem., 2010, 20:9619-9622

    23. [23]

      [23] MIAO Jian-Wen(缪建文), FAN Yi-Ning(范以宁), JIN Yong-Shu(金永漱), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2003,19(12):1361-1365

    24. [24]

      [24] Han X P, Zhang T R, Du J, et al. Chem. Sci., 2013,4:368-376

    25. [25]

      [25] Du J, Pan Y D, Zhang T R, et al. J. Mater. Chem., 2012,22: 15812-15818

    26. [26]

      [26] Zhu J, Su Y, Cheng F Y, et al. J. Power Sources, 2007,166: 331-336 [27] Toby B H. J. Appl. Cryst., 2001,34:210-213

    27. [27]

      [28] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications. New York: Wiley, 2000

    28. [28]

      [29] El-Deab M S, Ohsaka T. Angew Chem Int Ed, 2006,45: 5963-5966

    29. [29]

      [30] Li X X, Qu W, Zhang, J J, et al. J. Electrochem. Soc., 2011, 158:A597-A604

    30. [30]

      [31] Cheng F Y, Shen J, Ji W Q, et al. ACS Appl. Mater. Interfaces, 2009,1:460-466

    31. [31]

      [32] ZHANG Huan(章欢), DAI Yu(戴煜), HU Xiao-Hong(胡晓宏), et al. Sci. Sin. Chim. (Zhongguo Kexue: Huaxue), 2011,41 (12):1784-1790

    32. [32]

      [33] Xu J J, Xu D, Wang Z L, et al. Angew. Chem. Int. Ed., 2013,52:3887-3890

    33. [33]

      [34] DiCastro V, Polzonetti G, Contini G, et al. Surf. Interface. Anal., 1990,16:571-574

    34. [34]

      [35] Oku M, Hirokawa K. J. Electron. Spectrosc. Relat. Phenom., 1976,8:475-481

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    6. [6]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(0)
  • Abstract views(180)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return