Citation: SONG Xiao-Li, GAO Li-Guo, CAO Wei. Chelation between Luteolin and Cd(Ⅱ) Ion: Spectroscopic Studies and Theoretical Calculations[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1985-1992. doi: 10.3969/j.issn.1001-4861.2013.00.278 shu

Chelation between Luteolin and Cd(Ⅱ) Ion: Spectroscopic Studies and Theoretical Calculations

  • Received Date: 21 March 2013
    Available Online: 10 May 2013

    Fund Project: 国家自然科学基金(No.31272510) (No.31272510)陕西省教育厅科学研究计划项目(No.2010JK926)资助项目。 (No.2010JK926)

  • In order to locate the exact chelation site, the chelation between luteolin and Cd(Ⅱ) ion was studied using theoretical methods. Various complexes, formed by natural and deprotonated luteolin chelating with Cd(Ⅱ) and hydrated Cd(Ⅱ) ion, respectively, were studied by using "Density Functional Theory"(DFT) method. The results indicate that Cd(Ⅱ) ion is connected with luteolin at the 5-hydroxy-4-keto site in the formed complexes and that deprotonated luteolin has stronger chelating power than natural luteolin. The reactivity differences between luteolin and luteolin-Cd(Ⅱ) complexes were observed through comparison of their Conceptual DFT reactivity indices. In addition to the theoretical studies, the experiments were performed to compare with the theoretical conclusions. Meanwhile, luteolin-Cd(Ⅱ) complex was synthesized, and the chelation site was analyzed using IR and UV/Vis spectroscopy. The experimental results have the same conclusions as those by theoretical studies.
  • 加载中
    1. [1]

      [1] Leopoldini M, Pitarch I, Toscano M, et al. J. Phys. Chem. A, 2004,108:92-96

    2. [2]

      [2] Webb M R, Ebeler S E. Biochem. J. 2004,384:527-541

    3. [3]

      [3] Russo N, Toscano M, Uccella N. J. Agric. Food Chem., 2000, 48:3232-3237

    4. [4]

      [4] Wolfbeis O S, Begum M, Geiger H. Monatsh. Chem., 1987, 118:1403-4111

    5. [5]

      [5] Chen W J, Sun S F, Cao W, et al. J. Mol. Struct., 2009,918: 194-197

    6. [6]

      [6] Shimoi K, Masuda S, Furugori M, et al. Carcinogenesis, 1994,15:2669-2672

    7. [7]

      [7] Yasukawa K, Takido M, Nakagawa S, et al. Chem. Pharmaceut. Bull., 1989,37:1071-1073

    8. [8]

      [8] Yamamoto H, Sakakibara J, Sekiya K, et al. J. Agric. Food Chem., 1998,46:862-865

    9. [9]

      [9] Ferriola P C, Cody V, Middleton E Jr. Biochem. Pharmacol., 1989,38:1617-1624

    10. [10]

      [10] Akesson A, Julin B, Wolk A. Cancer Res, 2008,68:6435-6441

    11. [11]

      [11] Waalkes M P. J. Inorg. Biochem., 2000,79:241-244

    12. [12]

      [12] Parr R G, Yang W. Density Functional Theory of Atoms and Molecules, Oxford :Oxford University Press, 1989:13

    13. [13]

      [13] Geerlings P, De Proft F, Langenaeker W. Chem. Rev., 2003,103:1793-1873

    14. [14]

      [14] Noorizadeh S, Maihami H. J. Mol. Struct. (THEOCHEM.), 2006,763:133-144

    15. [15]

      [15] Noorizadeh S. Chin. J. Chem., 2007,25:1439-1444

    16. [16]

      [16] Janak J F. Phys. Rev. B, 1978,18:7165-7168

    17. [17]

      [17] Parr R G, Szentpály L V, Liu S. J. Am. Chem. Soc., 1999, 121:1922-1924

    18. [18]

      [18] Parr R G, Yang W J. J. Am. Chem. Soc., 1984,106:4049-4050

    19. [19]

      [19] Ayers P W, Levy M. Theor. Chem. Acc., 2000,103:353-360

    20. [20]

      [20] Senet P. J. Chem. Phys., 1997,107:2516-2524

    21. [21]

      [21] Chatterjee A. Int. J. Quantum. Chem., 2011,111:3821-3830

    22. [22]

      [22] Ayers P W, Anderson J S M, Jawed Z, et al. Phys. Chem. Chem. Phys., 2005,7:1918-1925

    23. [23]

      [23] Ayers P W, Anderson J S M, Bartolotti L J. Int. J. Quantum Chem., 2005,101:520-534

    24. [24]

      [24] (a) Roos G, Loverix S, Brosens E, et al. ChemBioChem., 2006,7:981-987 (b) Campodonico P R, Andres J, Contreras R, et al. Chem. Phys. Lett.. 2007,439:177-182 (c) Guerra D, Castillo R, Andres J, et al. Chem. Phys. Lett.. 2006,424:437-442 (d) Campodonico P R, Andres J, Contreras R, et al. Chem. Phys. Lett., 2008,464:271-275

    25. [25]

      [25] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2004.

    26. [26]

      [26] Becke A D. J. Chem. Phys., 1993,98:1372-1377

    27. [27]

      [27] Stephens P J, Devlin F J, Frisch M J, et al. J. Phys. Chem., 1994,98:11623-11627

    28. [28]

      [28] Cimas A, Rayón V M, Aschi M, et al. J. Chem. Phys., 2005, 123:14312-114322

    29. [29]

      [29] Gao L G, Song X L, Lü L L, et al. Comput. Theor. Chem.. 2011,968:31-38

    30. [30]

      [30] Xia Y, Yin D L, Rong C Y, et al. J. Phys. Chem. A, 2008, 112:9970-9975

    31. [31]

      [31] Chattaraj P K, Cedillo A, Parr R G. J. Chem. Phys., 1995,103:7645-7647

    32. [32]

      [32] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. New York: Wiley, 1986:21

    33. [33]

      [33] Markham K R. Techniques of Flavonoids Identification. London: Academic Press, 1982:104

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    3. [3]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    15. [15]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(0)
  • Abstract views(460)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return