Citation: SONG Ji-Mei, ZHAO Shao-Juan, WANG Yong, HU Hai-Qin, SHI Ya-Li, REN Ming-Song. ZnWO4 Nanoparticles as Catalyst for Synthesis of 5-Phenyl-1H-tetrazoles with High Activity[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1813-1818. doi: 10.3969/j.issn.1001-4861.2013.00.258 shu

ZnWO4 Nanoparticles as Catalyst for Synthesis of 5-Phenyl-1H-tetrazoles with High Activity

  • Received Date: 29 January 2013
    Available Online: 23 April 2013

    Fund Project: 国家自然科学基金(No.21171002) (No.21171002)安徽省自然科学基金(No.11040606M55) (No.11040606M55)安徽省教育厅自然科学基金(No.KJ2010A015)资助项目。 (No.KJ2010A015)

  • ZnWO4 nanoparticles were synthesized by a facile solvothermal method. ZnWO4 nanoparticles were utilized as the catalyst for the formation of 5-phenyl-1H-tetrazoles from cyclo-addition reaction. The results show that the yield reaches 81% when 0.2 mmol catalyst is used at 110℃ for 10 h. However, the yield only reaches 43% and 65% for amorphous and nanorods ZnWO4, respectively. Clearly, ZnWO4 nanoparticles display superior catalytic performance. This high activity might be attributed to the larger surface area and more active sites that originate from the small size and good dispersibility of ZnWO4 nanoparticles. The unsaturated W atoms on the surface of ZnWO4 nanoparticles can activate the nitriles and enhance the reactivity for azides.
  • 加载中
    1. [1]

      [1] Tsarevsky N V, Bernaerts K V, Dufour B, et al. Macromole-cules., 2004,37:9308-9313

    2. [2]

      [2] Herr R J. Bioorg. Med. Chem., 2002,10:3379-3393

    3. [3]

      [3] Bavetsias V, Marriott J H, Melin C, et al. J. Med. Chem., 2000,43:1910-1926

    4. [4]

      [4] Wittenberger S. J. Org. Prep. Proced. Int., 1994,26:499-531

    5. [5]

      [5] Ostrovskii V A, Pevzner M S, Kofmna T P, et al. Targets Heterocycl. Syst., 1999,3:467

    6. [6]

      [6] Hiskey M, Chavez D E, Naud D L, et al. Proc. Int. Pyrotech. Semin., 2000,27:3-14

    7. [7]

      [7] Koldobskii G I, Ostrovskii V A. Usp. Khim., 1994,63:847-865

    8. [8]

      [8] Huisgen R, Sauer J, Sturn H J. Chem. Ber., 1960,93:2106-2124

    9. [9]

      [9] Abu-Eittah R H, El-Kelany. Spectrochim. Acta. Part A, 2012, 99:316-328

    10. [10]

      [10] Terrence R B J, Yao Z J, Gao Y, et al. Bioorg. Med. Chem., 2001,9:1439-1445

    11. [11]

      [11] Herandez A S, Cheng P T W, Musial C M, et al. Bioorg. Med. Chem., Lett., 2007,17:5928-5933

    12. [12]

      [12] Wang L Z, Qu Z R, Zhao H. Inorg. Chem.,2003,42:3969-3971

    13. [13]

      [13] Amantini D, Beleggia R, Fringuelli F, et al. J. Org. Chem., 2004,69:2896-2898

    14. [14]

      [14] Aridoss G, Zhao C Q, Borosky G L, et al. J. Org. Chem., 2012,77:4152-4155

    15. [15]

      [15] Ostrovskii V A, Koren A O. Heterocycles., 2000,53:1421-1448

    16. [16]

      [16] Harding M M, Mokdsi G. Curr. Med. Chem., 2000,7(12): 1289-1303

    17. [17]

      [17] Demko Z P, Sharpless K B. J. Org. Chem., 2001,66:7945-7950

    18. [18]

      [18] Zhou Y, Yao C, Ni R J, et al. Synth. Commun., 2010,40: 2624-2632

    19. [19]

      [19] He J H, Li B J, Chen F S, et al. J. Mol. Catal. A, 2009,304: 135-138

    20. [20]

      [20] Aridoss G, Laali K K. Eur. J. Org. Chem., 2011:6343-6355

    21. [21]

      [21] Lang L M, Li B J, Liu W, et al. Chem. Comm., 2010,46:448-450

    22. [22]

      [22] Liu Y X, Song H, Zhang Q H, et al. Ind. Eng. Chem. Res., 2012,51:4779-4893

    23. [23]

      [23] Zhu L P, Zhang W D, Xiao H M, et al. J. Phys. Chem. C., 2008,112:10073-10078

    24. [24]

      [24] Zhong L S, Hu J S, Liang H P, et al. J. Adv. Mater., 2006, 18:2426-2431

    25. [25]

      [25] Yu D B, Sun X Q, Zou J W, et al. J. Phys. Chem. B, 2006, 110:21667-21671

    26. [26]

      [26] LI Lei(李蕾), ZENG Shu-yuan(曾涑源), MI Yu-wei(米玉伟), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012, 8(28):1643-1650

    27. [27]

      [27] Lin J, Lin J, Zhu Y F. Inorg. Chem., 2007,46(20):8372-8378

    28. [28]

      [28] Gillet M, Lemire C, Gillet E, et al. Surf. Sci., 2003,532:519-526

    29. [29]

      [29] Nagornaya L, Burachas S, Vostretsov Y, et al. J. Cryst. Growth., 1999,877:199-199

    30. [30]

      [30] Wahl D, Mykhaylyk M S, Mikhailik V B et al. J. Appl. Phys., 2005,97:083523-083523

    31. [31]

      [31] Song J M, Wang H, Li Y P, et al. Mater. Res. Bull., 2012, 47:315-320

    32. [32]

      [32] Dambournet D, Leclerc H, Vimont A, et al. Phys. Chem. Chem. Phys., 2009,11:1369-1379

    33. [33]

      [33] ZENG Yu-Feng(曾玉凤), LIU Zi-Li(刘自力), QIN Zu-Zeng (秦祖赠), et al. Chinese J. Mole. Catal.(Fenzi Cuihua), 2009,23(1):53-56

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    16. [16]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    17. [17]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    18. [18]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(0)
  • Abstract views(241)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return