Citation: XU Yang, FU Rao, LIU Yang, ZHANG Hai-Yang, WANG Zhao. One-Step Hydrothermal Synthesis and Research on the Photovoltaic Properties of the Complex TiO2[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2126-2132. doi: 10.3969/j.issn.1001-4861.2013.00.251 shu

One-Step Hydrothermal Synthesis and Research on the Photovoltaic Properties of the Complex TiO2

  • Received Date: 6 January 2013
    Available Online: 21 March 2013

    Fund Project: 国家自然科学基金(No.51173038) (No.51173038)科技型中小企业技术创新基金(No.12C26212201382)资助项目 (No.12C26212201382)

  • TiO2 nanorod arrays were synthesized through the one-step hydrothermal process. The influence of deionized water to the morphology of nanorod arrays instead of absolute ethyl alcohol as precursor was also investigated. The results showed that a layer of TiO2 microsphere can be synthesized on the top of the nanorod arrays, which serve as the basic unit for the growth of microsphere and finally result in complex TiO2 nanorod arrays film. The XRDand TEMresults suggeste that the nanorod arrays film is consisted of single-crystalline TiO2with tetragonal rutile phase structures. After the assembling of dye sensitized solar cells with the as-synthesized samples, the open-circuit voltage and short-circuit current density and fill factor were measured out as Voc=0.63 V, Jsc=10.9 mA·cm-2 and FF=56.3%, respectively. The energy conversion efficiency (η) is approximately 4.1%.
  • 加载中
    1. [1]

      [1] CUI Rong-Qiang(崔容强), HUANG Yan(黄燕), SUN Tie-Guo (孙铁国). Energy Eng.(Nengyuan Gongcheng), 1999,1:1-3 [2] O'Regan B, Gratzel M. Nature, 1991,24:353-737 [3] Hegfleldt A, Gratzel M. Chem. Rev., 1995,95:49-68 [4] Meng Q B, Lin Y, Dai S. Y. Physics, 2004,3:177-180 [5] Desilvestro J, Graetzel M, Kavan L, et al. J. Am. Chem. Soc., 1985,10:2988-2990 [6] Seigo L, Murakami T N, Comte P, et al. Thin Solid Films, 2008,30:4613-4619 [7] Daeneke T, Kwon T H, Holmes A B, et al. Nature Chem., 2011,3:211-215 [8] Dai S Y, Kong F T, Hu L H, et al. Acta Phys. Sin., 2005,4: 1919-1926 [9] Kong F T, Dai S Y. Prog. Chem., 2004,18:1410-1422 [10]Hu L H, Dai S Y. Chin. Phys. Lett., 2005,22:493-499 [11]Oskam G, Meyer G J. J. Phys. Chem., 1996,100:17021-17027 [12]Hao Y Z, Yang M Z, Cai S M. Acta Phys.-Chim. Sin., 1998, 14:309-314 [13]Vlachopoulos N, Liska P, Augustynski. J. Am. Chem. Soc., 1988,4:1216-1220 [14]Gopal K M, Karthik S, Maggie P, et al. Nano Lett., 2006,2: 215-218 [15]Ferber J, Luther J. Solar Energy Mater. Solar Cells., 1998, 54:265-275 [16]Barbe C, Arendse F, Comte P, et al. J. Am. Ceram. Soc., 1997,80:3157-3171 [17]Koo B, Park J, Kim Y, et al. J. Phys. Chem., 2006,110: 24318-24323 [18]Adachi M, Murata Y, Takao J, et al. J. Am. Chem. Soc., 2004,126:14943-14949 [19]Liu B, Aydil E S. J. Am. Chem. Soc., 2009,11:3985-3990 [20]Kang S H, Choi S H, Kang M S, et al. Adv. Mater., 2008, 20:54-58 [21]Law M, Greene L E, Johnson J C, et al. Nat. Mater., 2005, 4:455-459 [22]Tan B, Wu Y Y. J. Phys. Chem., 2006,110:15932-19538 [23]Karthik S, Gopal K M, Haripriya E P, et al. Iopsci. Nano- technol., 2007,18:707-714 [24]Liu B, Aydil E S. J. Am. Chem. Soc., 2009,11:3985-3990 [25]Marco L D, Manca M, Giannuzzi R, et al. J. Phys. Chem., 2010,114:4228-4236 [26]Manuela J, Haim L. Nano Lett., 2003,3:353-358 [27]Jong H P, Sungwook K, Allen J. E. Nano Lett., 2006,1:24- 28 [28]Marian N, Joop S, Albert G. Nano Lett., 2005,9:1716-1719 [29]ZHONG Wei-Zhuo(仲维卓), HUA Su-Kun(华素坤). Shanghai Chem. Ind.(Shanghai Huagong), 1998,11:25-27 [30]LI Jing-Xian(李竟先), WU Jin-Qiu(吴基球). China Ceram. (Zhongguo Taoci), 2002,38:72-76 [31]Huang X P, Pan C X. J. Cryst. Growth, 2007,306:117-122 [32]LI Jing-Xian(李竟先), WU Jin-Qiu(吴基球). China Ceram. Ind.(Zhongguo Taoci Gongye), 2001,8:29-33

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    9. [9]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    10. [10]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    11. [11]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    14. [14]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    15. [15]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    20. [20]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

Metrics
  • PDF Downloads(0)
  • Abstract views(283)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return