Citation: HAN Zhi-Zhong, WEI Li-Yuan, GUO Ye, PAN Hai-Bo, CHEN Jian-Zhong, CHEM Nai-Sheng. Synthesis and Photovoltaic Charateristics of Ag-Ag2Se Sensitized ZnO Flower-Rod Heterostructures[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1856-1862. doi: 10.3969/j.issn.1001-4861.2013.00.247 shu

Synthesis and Photovoltaic Charateristics of Ag-Ag2Se Sensitized ZnO Flower-Rod Heterostructures

  • Received Date: 15 January 2013
    Available Online: 18 March 2013

    Fund Project: 国家自然科学基金(No.91022025,51072036,21201035) (No.91022025,51072036,21201035)福建省自然基金(No.2012J01204)资助项目。 (No.2012J01204)

  • ZnO flower-rod ordered arrays (ZFRs) were synthesized via a liquid phase method, and the ZFRs were sensitized with Ag and Ag2Se quantum dots (AA-ZFRs) by ion exchange. Scanning electron microscopy (SEM), powder X-ray diffraction (XRD), energy dispersive X-ray spectra (EDS), and transmission electron microscopy (TEM) were used to characterize Ag and Ag2Se sensitized ZnO flower-rods (AA-ZFRs). And the photoelectrochemical properties and quantum efficiency were also investigated. The results indicate that the optical absorption of AA-ZFRs can be controllably tuned to cover almost the entire visible spectrum. The sensitization with Ag-Ag2Se restrains the recombination of photogenerated electron-hole pairs due to the heterojunction between Ag-Ag2Se and ZFRs, and enhances the incident photon-to-electron conversion efficiency. Thus, the as-prepared AA-ZFRs exhibit a higher open-circuit photovoltage (-0.77 V Ag/AgCl) and short-circuit photocurrent (0.64 mA·cm-2) under visible light.
  • 加载中
    1. [1]

      [1] Yella A, Lee H W, Tsao H N, et al. Science, 2011,334:629-634

    2. [2]

      [2] Itzhaik Y, Niitsoo O, Page M, et al. J. Phys. Chem. C, 2009, 113:4254-4256

    3. [3]

      [3] Belaidi A, Dittrich T, Kieven D, et al. Phys. Status Solidi (RRL), 2008,2:172-174

    4. [4]

      [4] Yu W W, Peng X. Angew. Chem. Int. Ed., 2002,41:2368-2371

    5. [5]

      [5] Moreels I, Lambert K, Muynck D D, et al. Chem. Mater., 2007,19:6101-6106

    6. [6]

      [6] Schaller R D, Klimov V I. Phys. Rev. Lett., 2004,92:186601/1-4

    7. [7]

      [7] Peter L M, Riley D J, Tull E Z, et al. Chem. Commun. (Cambridge), 2002:1030-1031

    8. [8]

      [8] Robel I, Subramanian V, Kuno M, et al. J. Am. Chem. Soc., 2006,128:2385-2393

    9. [9]

      [9] HU Zhen-Long(胡振龙), DU Kai(杜锴), HUANG Zheng-Xi (黄正喜). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(3):509-514

    10. [10]

      [10] Hoyer P, Könenkamp R. Appl. Phys. Lett., 1995,66:349-351

    11. [11]

      [11] HAO Yan-Zhong(郝颜忠), WANG Wei(王伟). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2006,22(11):2070-2074

    12. [12]

      [12] Plass R, Serge P, Krüger J, et al. J. Phys. Chem. B, 2002, 106:7578-7580

    13. [13]

      [13] Xie Y, Yoo S H, Chen C, et al. Mater. Sci. Eng. B, 2012, 177:106-111

    14. [14]

      [14] Tubtimtae A, Lee M W, Wang G J. J. Power Sources, 2011, 196:6603-6608

    15. [15]

      [15] Wang D, Xie T, Peng Q, et al. J. Am. Chem. Soc., 2008, 130:4016-4022

    16. [16]

      [16] Dalven R, Gill R. Phys. Rev., 1967,159:645-649

    17. [17]

      [17] Han Z Z, Ren L L, Cui Z H. et al. Appl. Catal. B, 2012, 126:298-305

    18. [18]

      [18] Lin C A, Tsai D S, Chen C Y, et al. Nanoscale, 2011,3:1195-1199

    19. [19]

      [19] LI Li(李莉), ZHAO Yue-Hong(赵月红), LU Lu(路露), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2006,22 (11):2070-2074

    20. [20]

      [20] Tan H, Li S P, Fan W Y. J. Phys. Chem. B, 2006,110:15812-15816

    21. [21]

      [21] Cao H, Xiao Y, Lu Y, et al. Nano Res., 2010,3:863-873

    22. [22]

      [22] Li K W, Liu X, Wang H, et al. Mater. Lett., 2006,60:3038-3040

    23. [23]

      [23] Xu S, Zhang L, Zhang X, et al. Sens. Actuator B, 2011,155: 311-316

    24. [24]

      [24] Sahu A, Khare A, Deng D D, et al. Chem. Commun., 2012, 48:5458-5460

    25. [25]

      [25] Camargo P H C, Lee Y H, Jeong U, et al. Langmuir, 2007, 23:2985-2992

    26. [26]

      [26] Jeong U, Camargo P H C, Lee Y H, et al. J. Mater. Chem., 2006,16:3893-3897

    27. [27]

      [27] LI Ping(李平), LU Hai-Xia(路海霞), QIN Li-Zhao(覃礼钊), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2012, 28(9):1855-1860

    28. [28]

      [28] Sun Y, Fox N A, Fuge G M, et al. J. Phys. Chem. C, 2010, 114:21338-21341

    29. [29]

      [29] MENG A-Lan(孟阿兰), LIN Yu-Sheng(蔺玉胜), WANG Guang-Xin(王光信). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2005,21(4):583-587

    30. [30]

      [30] Zheng Y H, Zheng L R, Zhan Y Y, et al. Inorg. Chem., 2007,46:6980-6986

    31. [31]

      [31] TIAN Xiao-Liang(田晓亮), SUN Wan-Ting(孙婉婷), XIE Ming-Zheng(谢明政), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(7):1441-1446

    32. [32]

      [32] FENG Yu(冯宇), FENG Qiu-Ju(冯秋菊), WANG Jue(王珏), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012, 28(7):1245-1248

    33. [33]

      [33] Samuel M S, Koshy J, Chandran A, et al. Curr. Appl. Phys., 2011,11:1094-1099

    34. [34]

      [34] Yang Y C, Wang G F, Li X D. Nano Lett., 2011,11:2845-2848

    35. [35]

      [35] Wang J X, Wu C M L, Cheung W S, et al. J. Phys. Chem. C, 2010,114:13157-13161

    36. [36]

      [36] WANG Zhi-Fang(王志芳), LI Mi(李密), ZHANG Hong-Xia (张红霞). Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(4):715-720

    37. [37]

      [37] LIU Jie(刘洁), TANG Xin-Cun(唐新村), WANG Zhi-Min(王 志敏), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(11):2329-2334

    38. [38]

      [38] Xu C K, Shin P H, Cao L L, et al. Chem. Mater., 2010,22: 143-148

    39. [39]

      [39] Wang X, Zhu H, Xu Y, et al. ACS Nano, 2010,4:3302-3308

    40. [40]

      [40] Xiong Z G, Ma J Z, Ng W J, et al. Water Res., 2011,45: 2095-2103

    41. [41]

      [41] O'Regan B, Gräetzel M. Nature, 1991,335:737-739

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    14. [14]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    15. [15]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    16. [16]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(0)
  • Abstract views(354)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return