Citation: SUN Xia-Wei, TAN Jin, LI Cong-Ming, LEI Ting, MENG Xiao-Kang, YAN Wei, ZHANG Wei, FENG Shan. Doping Effects of Sb, Bi, Zr and Si on the Properties of YAG:Ce Phosphor[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1863-1869. doi: 10.3969/j.issn.1001-4861.2013.00.241 shu

Doping Effects of Sb, Bi, Zr and Si on the Properties of YAG:Ce Phosphor

  • Received Date: 29 January 2013
    Available Online: 7 April 2013

    Fund Project: 国家自然科学基金(No.40643018)资助项目。 (No.40643018)

  • The Sb3+, Bi3+, Zr4+ and Si4+ doped YAG:Ce yellow phosphors were synthesized by high temperature solid-state method. The doping effect and the related mechanism of Sb3+, Bi3+, Zr4+ and Si4+ on the luminescence intensity of YAG:Ce were studied. The results show that the luminescence intensity firstly increases with the increases of the Sb3+, Bi3+, Zr4+ and Si4+ concentration, then decreases. The energy transfer from Sb3+ and Bi3+ to Ce3+ took the mechanism of the multipolar interactions, which leads the improvements of the emission intensity about 35.5% at 0.5 mmol for Sb3+ and 44.8% at 0.1 mmol for Bi3+, respectively. The additions of Zr4+ and Si4+ promote further reduction of Ce4+ to Ce3+, owing to spontaneous charge compensation. The highest emission intensity is obtained at the concentrations of Zr4+ and Si4+ of 0.3 mmol and 7 mmol, which is increased by 27.4% and 31.2%, respectively. With the doping of Sb3+, Bi3+, Zr4+ and Si4+ elements, the growth of phosphor particle is improved, resulting in the enhancement of phosphors emission.
  • 加载中
    1. [1]

      [1] JIANG Xi-Ling(蒋西岭). Thesis for the Master of Tianjin University(天津大学硕士论文). 2008.

    2. [2]

      [2] Park J Y, Jung H C, Jeong J H, et al. Current Appl. Phys., 2013,13(3):441-447

    3. [3]

      [3] Zhang K, Liu H Z, Wu Y T, et al. J. Alloys Compd., 2008, 453:265-270

    4. [4]

      [4] XU Shi-Qing (徐时清), SUN Liu-Zheng (孙柳正), ZHANG Ying (张颖), et al. J. Rare Earths(Xitu Xuebao), 2009,27(2): 327-331

    5. [5]

      [5] Won C W, Nersisyan H H, Won H I, et al. J. Alloys Compd., 2011,509:2621-2626

    6. [6]

      [6] ZHANG Shu-Sheng(张书生), ZHUANG Wei-Dong(庄卫东), HE Tao(何涛), et al. J. Rare Earths(Xitu Xuebao), 2010,28 (5):713-716

    7. [7]

      [7] Gessmann T, Sehubet E F. Appl. Phys., 2004,95(5):2203-2216

    8. [8]

      [8] XIAO Zhi-Guo(肖志国), SHI Chun-Shan(石春山), LUO Xi-Xian(罗昔贤). Semiconductor Lighting Luminescent Material (半导体照明用发光材料). Beijing: Chemical Industrial Press, 2008:3-22

    9. [9]

      [9] LIU Xing-Ren(刘行仁), XUE Sheng-Xue(薛胜薛), HUANG De-Sen(黄德森). Lamps. Light.(Guangyuan Yu Zhaoming), 2003(3):4-8

    10. [10]

      [10] LIU Mu-qing(刘木清). China's Semiconductor Lighting Industry Development Yearbook(中国半导体照明产业发展 年鉴). Beijing:Chinese Machine Press, 2006.

    11. [11]

      [11] Ye S, Xiao F, Pan Y X, et al. Mater. Sci. Eng. R, 2010,71: 1-34

    12. [12]

      [12] ZHANG Shao-Hua(章少华), JIANG Liu-Yang(江柳杨), ZHANG Jiang(张璟), et al. J. Chin. Soc. Rare Earths (Zhongguo Xitu Xuebao), 2012,30(5):574-580

    13. [13]

      [13] Pan Y X, Wu M M, Su Q, et al. Mater. Sci. Eng. B, 2004, 106:251-256

    14. [14]

      [14] Ho S J, Won B I, Dong C L, et al. J. Lumin., 2007,126:371-377

    15. [15]

      [15] ZHANG Shao-Hua(章少华), JIANG Liu-Yang(江柳杨), ZHANG Jiang(张璟), et al. Chin. J. Lumin. (Faguang Xuebao), 2012,33(8):824-827

    16. [16]

      [16] Xu X L, Yu X B, Mao L H, et al. Mater. Lett., 2004,58(29): 3665-3668

    17. [17]

      [17] Setlur A A, Srivastava A M. Opt.Mater., 2006,29(4):410-415

    18. [18]

      [18] Chawlan P, Lochab S P, Singh N, et al. J. Alloys Compd., 2010,45(7):783-786

    19. [19]

      [19] ZHANG Mai-Sheng(张迈生), ZANG Li-Na(臧李纳). Rare Metal Mater. Eng.(Xiyou Jinshu Cailiao Yu Gongcheng), 2002(1):69-72

    20. [20]

      [20] HUANG Xian(黄先), WANG Jian(王健), WU Qing(吴庆), et al. Chin. J. Lumin.(Faguang Xuebao), 2007,28(6):869-874

    21. [21]

      [21] WANG Rong(王荣), XU Jin(徐进), CHEN Chao(陈朝). J. Lumin.(Faguang Xuebao), 2011,32(10):983-987.

    22. [22]

      [22] Peng H S, Song H W, Chen B J, et al. J. Chem. Phys., 2003,118(7):3277-3283

    23. [23]

      [23] Xu Q H, Liu B C, Mao Y L. J. Lumin., 2008,128(12).

    24. [24]

      [24] Mukherjee S, Sudarsan V, Vatsa R K, et al. J. Lumin., 2009,129:69-72

    25. [25]

      [25] Zorenko Y, Gorbenko V, Voznyak T. et al. J. Lumin., 2012, 134:539-543

    26. [26]

      [26] Wang P, Wang D J, Song J, et al. J. Mater. Sci.: Mater. Electro., 2012,23(9):1764-1769

    27. [27]

      [27] XIAO Li-Hong(肖莉红), GU Mu(顾牡), LIU Xiao-Lin (刘小林). Spectrosc. Spectr. Anal.(Guangpu Yu Guangpu Fenxi), 2007,27(6):1054-1057

    28. [28]

      [28] LI Xue-Ming(黎学明), KONG Ling-Feng(孔令峰), et al. Chinese J. Inorg. Chem.(Wuji HuaXue Xuebao), 2009,25(5): 865-868

    29. [29]

      [29] Thiyagarajan P, Kottaisamy M, Ramachandra R M S, et al. J. Mater. Res. Bull., 2006,42(4):753-761

    30. [30]

      [30] Murata T, Tanoue T, Jwasaki M, et al. J. Lumin., 2005,114 (3/4):207-212

    31. [31]

      [31] Kreissl J, Troppenz U, Fouassier C, et al. J. Appl. Phys., 1996,80(9):5218-5222

    32. [32]

      [32] Zeng Q H, Pei Z W, Wang S B, et al. J. Alloys Compd., 1998,275:238-241

    33. [33]

      [33] YU Xian-En(余宪恩). Practical Light-emitting Materials. 2nd Ed.(实用发光材料.2版). Beijing: Chinese Light Industry Press, 2008.

    34. [34]

      [34] Li J S, Alim M A. J.Mater. Sci. Electro., 2006,17(7):503-508

    35. [35]

      [35] Katelnikovas A, Bettentrup H, Uhlich D, et al. J. Lumin., 2009,129:1356-1361

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    4. [4]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    5. [5]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    6. [6]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

Metrics
  • PDF Downloads(0)
  • Abstract views(450)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return