Citation: TENG Ming-Yu, WANG Cheng-Cheng, JING Yi-Ming, ZHENG You-Xuan, LIN Chen. Efficient Green Organic Light-Emitting Diodes with fac-Tris(2-(4-trifluoromethylphenyl)pyridine)iridium Complex as Emitter[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(7): 1490-1496. doi: 10.3969/j.issn.1001-4861.2013.00.236 shu

Efficient Green Organic Light-Emitting Diodes with fac-Tris(2-(4-trifluoromethylphenyl)pyridine)iridium Complex as Emitter

  • Received Date: 24 December 2012
    Available Online: 1 April 2013

    Fund Project: 国家自然科学基金(No.20971067) (No.20971067)江苏省自然科学基金(No.BK2011551)资助项目。 (No.BK2011551)

  • fac-Tris(2-(4-trifluoromethylphenyl)pyridine)iridium (Ir(tfmppy)3) was prepared by conventional method and its crystal structure was determined. Excitation at either π→π* or MLCT absorption band of Ir(tfmppy)3 in CH2Cl2 solution leads to the same MLCT emission maxima at 525 nm with Commission Internationale de L'Eclairage (CIE) coordinates of (0.31, 0.62) and the emission quantum yield is 4.59% in CH2Cl2 (by reference to an aerated aqueous solution of [Ru(bpy)3]Cl2 as the standard solution). Organic light-emitting diodes (OLEDs) based on the green electrophosphorescent complex in ITO/TAPC (1,1-bis [4-[N,N-di(p-tolyl)amino]phenyl]cyclohexane, 60 nm)/Ir(tfmppy)3 (x%):mCP (1,3-bis (carbazol-9-yl)benzene, 30 nm)/TPBi (2,2',2"-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole, 60 nm)/LiF (1 nm)/Al (100 nm) were investigated. The device with 4% dopant concentration shows a maximum current efficiency of 33.95 cd·A-1 at 4 197 cd·m-2, a maximum brightness of 43 612 cd·m-2 at 12.7 V, and CIE coordinates of (0.31, 0.61). The device with 6% dopant concentration exhibits a maximum power efficiency of 27.29 cd·A-1 at 1 981 cd·m-2, a maximum brightness of 33 071 cd·m-2 at 9.6 V. The electron mobility of Ir(tfmppy)3 is 4.24×10-6 cm2·(V·s)-1 under electric field of 1 300 (V·cm-1)1/2 via transient electroluminescence (TEL) method, which is close to that of Alq3 (tri(8-hydroxyquinoline)aluminum) emitter. CCDC: 887658.
  • 加载中
    1. [1]

      [1] Tsuboyama A, Iwawaki H, Furugori M, et al. J. Am Chem. Soc., 2003,125:12971-12979

    2. [2]

      [2] Okada S, Okinaka K, Iwawaki H, et al. Dalton Trans., 2005, 9:1583-1590

    3. [3]

      [3] Baldo M A, Lamansky S, Burrows P E, et al. Appl. Phys. Lett., 1999,75:4-5

    4. [4]

      [4] Holmes R J, Forrest S R, Tung Y J, et al. Appl. Phys. Lett., 2003,82:2422-2423

    5. [5]

      [5] Tokito S, Iijima T, Suzuri Y, et al. Appl. Phys. Lett., 2003, 83:569-570

    6. [6]

      [6] Adachi C, Baldo M, Thompson M E, et al. J. Appl. Phys., 2001,90:5048-5051

    7. [7]

      [7] Kawamura Y, Goushi K, Brooks J, et al. Appl. Phys. Lett., 2005,86:071104-071105

    8. [8]

      [8] Li J, Djurovich P I, Alleyne B D, et al. Inorg. Chem., 2005, 44:1713-1727

    9. [9]

      [9] Zhou G J, Wong W Y, Yao B, et al. Angew. Chem. Int. Ed., 2007,46:1149-1151

    10. [10]

      [10] Lyu Y Y, Byun Y, Kwon O, et al. J. Phys. Chem. B, 2006, 110:10303-10314

    11. [11]

      [11] Chang C F, Cheng Y M, Chi Y, et al. Angew. Chem. Int. Ed., 2008,47:4542-4545

    12. [12]

      [12] Ho C L, Wong W Y, Wang Q, et al. Adv. Funct. Mater., 2008,18:928-937

    13. [13]

      [13] Sasabe H, Takamatsu J, Motoyama T, et al. Adv. Mater., 2010,22:5003-5007

    14. [14]

      [14] King K A, Spellane P J, Watts R J, J. Am. Chem. Soc., 1985,107:1431-1432

    15. [15]

      [15] Lamansky S, Djurovich P, Murphy D, et al. J. Am. Chem. Soc., 2001,123:4304-4312

    16. [16]

      [16] King K A, Spellane P J, Watts R J, J. Am. Chem. Soc., 1985,107:1431-1432

    17. [17]

      [17] Adachi C, Baldo M A, Forest S R, et al. Appl. Phys. Lett., 2000,78:170-171

    18. [18]

      [18] Tanaka D, Sasabe H, Li Y J, et al. Jpn. J. Appl. Phys., 2007,46:L10-L12

    19. [19]

      [19] Zhu M R, Ye T L, He X, et al. J. Mater. Chem., 2011,21: 9326-9329

    20. [20]

      [20] Chou H H, Cheng C H, Adv. Mater., 2010,22:2468-2471

    21. [21]

      [21] Dedeian K, Djurovich P I, Garces F O, et al. Inorg. Chem., 1991,30:1865-1867

    22. [22]

      [22] Sykes D, Tidmarsh I S, Barbieri A, et al. Inorg. Chem., 2011,50:11323-11339

    23. [23]

      [23] Yu Z T, Yuan Y J, Cai J G, et al. Chem. Eur. J., 2013,19: 1303-1310

    24. [24]

      [24] Zhu Y C, Zhou L, Li H Y, et al. Adv. Mater., 2011,23:4041-4046

    25. [25]

      [25] Li H Y, Zhou L, Teng M Y, et al. J. Mater. Chem. C, 2013, 1:560-565

    26. [26]

      [26] Wang Y, Herron N, Grushin V V, et al. Appl. Phys. Lett., 2001,79:449-450

    27. [27]

      [27] Hung L S, Chen C H. Mater. Sci. Eng. R., 2002,39:143-222

    28. [28]

      [28] Chan I M, Cheng W C, Hong F C. Appl. Phys. Lett., 2002, 80:13-14

    29. [29]

      [29] Wu M F, Yeh S J, Chen C T, et al. Adv. Funct. Mater., 2007,17:1887-1895

    30. [30]

      [30] Baldo M A, O'Brien D F, You Y, et al. Nature, 1998,395: 151-154

    31. [31]

      [31] Baldo M A, Adachi C, Forrest S R. Phys. Rev. B, 2000,62: 10967-10977

    32. [32]

      [32] Baldo M A, O'Brien D F, Thompson M E, et al. Phys. Rev. B, 1999,60:14422-14428

    33. [33]

      [33] Kalinowski J, Stampor W, Me-zyk J, et al. Phys. Rev. B, 2002,66:235321-235335

    34. [34]

      [34] Teng M Y, Zhang S, Jiang S W, et al. Appl. Phys. Lett., 2012,100:073303-073305

    35. [35]

      [35] Scher H, Montroll E W. Phys. Rev. B, 1975,12:2455-2477

    36. [36]

      [36] Lee J, Chopra N, Eom S H, et al. Appl. Phys. Lett., 2008, 93:123306-123308

  • 加载中
    1. [1]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    2. [2]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    3. [3]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    7. [7]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    8. [8]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    9. [9]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    10. [10]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    13. [13]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    14. [14]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    15. [15]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    18. [18]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

Metrics
  • PDF Downloads(0)
  • Abstract views(579)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return