Citation: WANG Xiao-Qian, ZHANG Lin, ZHU Shun-Guan, ZHAO Jia. Preparation and Performance of Self-assembled Al/Fe2O3 and Al/CuO[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1799-1804. doi: 10.3969/j.issn.1001-4861.2013.00.228 shu

Preparation and Performance of Self-assembled Al/Fe2O3 and Al/CuO

  • Received Date: 11 January 2013
    Available Online: 17 March 2013

    Fund Project: 国家自然科学基金(No.61106078) (No.61106078)南京理工大学自主科研重大研究计划(No.2011ZDJH28)资助项目。 (No.2011ZDJH28)

  • Copper oxide nanoflower and iron oxide nanoring were prepared by membrane templating and hydrothermal, respectively. Copper oxide nanoflower and aluminum composite were self-assembled, so did iron oxide nanoring and aluminum. The connection between different materials were enhanced by self-assembly. The heat release and pressure of copper oxide nanoflower and aluminum were increased from 523 J·g-1, 1 858 kPa to 1 069 J·g-1, 4 389 kPa. Iron oxide nanoring and aluminum were increased from 1 448 J·g-1, 749 kPa to 2 039 J·g-1, 2 280 kPa. There are great difference between the two thermit, and the static-electric sensitivity of copper oxide nanoflower and aluminum is higher than that of most energetic materials, while the impact sensitivity of iron oxide nanoring and aluminum is lower. Thus different thermit can be used in different fields based on their performance.
  • 加载中
    1. [1]

      [1] Valliappan S, Swiatkiewicz J, Puszynski J A. Powder Technol., 2005,156(2):164-169

    2. [2]

      [2] WANG Xin(王昕). Chin. J. Explos. Propellants(Huozhaoyao Xuebao), 2006,29(2):29-32

    3. [3]

      [3] Rossi C, Zhang K L, Estève D, et al. J. Microelectromech. Syst., 2007,16(4):919-931

    4. [4]

      [4] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), GAO Hong-Xu(高 红旭), et al. J. Mater. Engin.(Cailiao Gongcheng), 2011,11: 23-28

    5. [5]

      [5] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), HAO Hai-Xia(郝 海霞), et al. Chin. J. Explos. Propellants(Huozhayao Xuebao), 2011,34(1):67-72

    6. [6]

      [6] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), PEI Qing(裴庆), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011, 27(2):231-238

    7. [7]

      [7] Aumann C E, Skofronick G L, Martin J A. J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., 1995,13(2):1178-1183

    8. [8]

      [8] Bockmon B S, Pantoya M L, Son S F, et al. J. Appl. Phys., 2005,98(6):064903/1-064903/7

    9. [9]

      [9] Granier J J, Pantoya M L. Combust. Flame, 2004,138(4):373-383

    10. [10]

      [10] Pantoya M L, Granier J J. Propellants Explos. Pyrotech., 2005,30(1):53-62

    11. [11]

      [11] Bhattacharya S, Gao Y, Apperson S, et al. J. Energ. Mater., 2006,24(1):1-15

    12. [12]

      [12] Gash A E, Tillotson T M, Satcher J H, et al. Chem. Mater., 2001,13(3):999-1007

    13. [13]

      [13] Prakash A, McCormick A V, Zachariah M R. Chem. Mater., 2004,16(8):1466-1471

    14. [14]

      [14] Prentice D, Pantoya M L, Clapsaddle B J. J. Phys. Chem., B, 2005,109(43):20180-20185

    15. [15]

      [15] Clapsaddle B J, Sprehn D W, Gash A E, et al. J. Non-Cryst. Solids, 2004,350(1):173-181

    16. [16]

      [16] Prakash A, McCormick A V, Zachariah M R. Nano Lett., 2005,5(7):1357-1360

    17. [17]

      [17] K. B. Plantier. Combust. Flame, 2005,140:299-309

    18. [18]

      [18] Sun J, Pantoya M L, Simon S L. Thermochim. Acta, 2006, 444(2):117-127

    19. [19]

      [19] Moore K, Pantoya M L. Propellants Explos. Pyrotech., 2006, 31(3):182-187

    20. [20]

      [20] Cheng J L, Hng H H, Ng H Y, et al. J. Phys. Chem. Solids, 2010,71:90-94

    21. [21]

      [21] Kim S H, Zachariah M R. Adv. Mater., 2004,16(20):1821-1825

    22. [22]

      [22] Rajesh S, Senthil S. Propellants Explos. Pyrotech., 2008,33 (2):122-130

    23. [23]

      [23] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), ZHANG Ping-Fei (张平飞). Summarization(Zongshu), 2009,6(6):60-67

    24. [24]

      [24] Zhang K L, Rossi C, Petrantoni M, et al. J. Microelectromech. Syst., 2008,17(4):832-836

    25. [25]

      [25] Tillotson T M, Gash A E, Simpson R L, et al. J. Non-Cryst. Solids, 2001,285(1):338-345

    26. [26]

      [26] ZHOU Chao(周超), LI Guo-Ping(李国平), LUO Yun-Jun(罗 运军). New Chem. Mater.(Huagong Xinxing Cailiao), 2010, 38(zl):4-7

    27. [27]

      [27] Cheng J L, Hng H H, Lee Y W, et al. Combust. Flame, 2010,157:2241-2249

    28. [28]

      [28] WANG Yi(王毅), LI Feng-Sheng(李凤生), JIANG Wei(姜炜), et al. Initiators Pyrotechnics(Huogongpin), 2008,4:11-14

    29. [29]

      [29] WANG Xiao-Qian(王晓倩), ZHANG Lin(张琳), ZHU Shun-Guan(朱顺官), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(11):2313-2320

    30. [30]

      [30] Malynych S, Luzinov I, Chumanov G. J. Phys. Chem., B, 2002,106,1280-1289

    31. [31]

      [31] Wang Y, Jiang W, Liang L X, et al. Rare Metal Mat. Eng., 2012,4(1):0009-0013

  • 加载中
    1. [1]

      Baitong Wei Rongxiu Zhu Zhenghu Xu . Thalidomide: Defeating the Three Evils. University Chemistry, 2026, 41(2): 273-278. doi: 10.12461/PKU.DXHX202502020

    2. [2]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    3. [3]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    4. [4]

      Jianan Fang Youhao Gu Zexuan Gui Laiying Zhang Jiawei Yan Ruming Yuan Xiaoming Xu . Experimental Improvement and Expansion of the Electromotive Force Method to Determine the Mean Activity Coefficient of Electrolyte Solution. University Chemistry, 2025, 40(11): 263-271. doi: 10.12461/PKU.DXHX202504055

    5. [5]

      Na Li Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134

    6. [6]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    7. [7]

      Kai ZhouAo SunYuchao WangHang DongChenkai BaiYidian MoXuyang DingXiangbao MengZhongtang LiZhongjun Li . Semisynthesis of rare chondroitin sulfate B and T oligosaccharides. Chinese Chemical Letters, 2025, 36(9): 110783-. doi: 10.1016/j.cclet.2024.110783

    8. [8]

      Dawei Zhang Lei Zhang Yibo Zhou Yajie Li YuPeng Guo . Developing a “One Core, Three Dimensions, Five Integrations” Chemistry Curriculum System for Non-Chemistry Majors at Jilin University. University Chemistry, 2025, 40(12): 147-156. doi: 10.12461/PKU.DXHX202510089

    9. [9]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    10. [10]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    11. [11]

      Chenfei Li Xu Han Qimeng Zhang Ben Zhang Xinyao Huang Mingxiao Deng Caixia Zheng Haizhu Sun . Measurement of Stress-Strain Curves of Polymeric Materials Using a Non-Contact Displacement Detector. University Chemistry, 2026, 41(1): 179-187. doi: 10.12461/PKU.DXHX202505101

    12. [12]

      Doudou LiuWeiwei GuoGuoliang MeiYoupeng DanRong YangChao HuangYanling ZhaiXiaoquan Lu . Application of catalyst Cu-t-ZrO2 based on the electronic metal-support interaction in electrocatalytic nitrate reduction. Chinese Chemical Letters, 2025, 36(8): 110578-. doi: 10.1016/j.cclet.2024.110578

    13. [13]

      Yeling YuanLihua DuKejing ZengYilu ZhengHuaping HuangYu ShaoWenqing WangLeping YanJun WuChanghua ZhangHongman XueHaozhe He . Hyaluronic acid-modified MOF nanoparticles for encapsulating asparaginase in T-cell acute lymphoblastic leukemia treatment. Chinese Chemical Letters, 2026, 37(1): 111222-. doi: 10.1016/j.cclet.2025.111222

    14. [14]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    15. [15]

      Yang LiuJing LiangMengzhu ZhengHaoze SongLixia ChenHua Li . PD-L1/SHP2 dual PROTACs inhibit melanoma by enhancing T-cell killing activity. Chinese Chemical Letters, 2025, 36(6): 110317-. doi: 10.1016/j.cclet.2024.110317

    16. [16]

      Zhilong SongShuaihua LuQionghua ZhouJinlan Wang . T2MAT (text-to-material): A universal agent for generating material structures with goal properties from a single sentence. Acta Physico-Chimica Sinica, 2026, 42(5): 100213-0. doi: 10.1016/j.actphy.2025.100213

    17. [17]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    18. [18]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    19. [19]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    20. [20]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

Metrics
  • PDF Downloads(0)
  • Abstract views(938)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return