Citation: WANG Xiao-Qian, ZHANG Lin, ZHU Shun-Guan, ZHAO Jia. Preparation and Performance of Self-assembled Al/Fe2O3 and Al/CuO[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(9): 1799-1804. doi: 10.3969/j.issn.1001-4861.2013.00.228 shu

Preparation and Performance of Self-assembled Al/Fe2O3 and Al/CuO

  • Received Date: 11 January 2013
    Available Online: 17 March 2013

    Fund Project: 国家自然科学基金(No.61106078) (No.61106078)南京理工大学自主科研重大研究计划(No.2011ZDJH28)资助项目。 (No.2011ZDJH28)

  • Copper oxide nanoflower and iron oxide nanoring were prepared by membrane templating and hydrothermal, respectively. Copper oxide nanoflower and aluminum composite were self-assembled, so did iron oxide nanoring and aluminum. The connection between different materials were enhanced by self-assembly. The heat release and pressure of copper oxide nanoflower and aluminum were increased from 523 J·g-1, 1 858 kPa to 1 069 J·g-1, 4 389 kPa. Iron oxide nanoring and aluminum were increased from 1 448 J·g-1, 749 kPa to 2 039 J·g-1, 2 280 kPa. There are great difference between the two thermit, and the static-electric sensitivity of copper oxide nanoflower and aluminum is higher than that of most energetic materials, while the impact sensitivity of iron oxide nanoring and aluminum is lower. Thus different thermit can be used in different fields based on their performance.
  • 加载中
    1. [1]

      [1] Valliappan S, Swiatkiewicz J, Puszynski J A. Powder Technol., 2005,156(2):164-169

    2. [2]

      [2] WANG Xin(王昕). Chin. J. Explos. Propellants(Huozhaoyao Xuebao), 2006,29(2):29-32

    3. [3]

      [3] Rossi C, Zhang K L, Estève D, et al. J. Microelectromech. Syst., 2007,16(4):919-931

    4. [4]

      [4] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), GAO Hong-Xu(高 红旭), et al. J. Mater. Engin.(Cailiao Gongcheng), 2011,11: 23-28

    5. [5]

      [5] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), HAO Hai-Xia(郝 海霞), et al. Chin. J. Explos. Propellants(Huozhayao Xuebao), 2011,34(1):67-72

    6. [6]

      [6] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), PEI Qing(裴庆), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011, 27(2):231-238

    7. [7]

      [7] Aumann C E, Skofronick G L, Martin J A. J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., 1995,13(2):1178-1183

    8. [8]

      [8] Bockmon B S, Pantoya M L, Son S F, et al. J. Appl. Phys., 2005,98(6):064903/1-064903/7

    9. [9]

      [9] Granier J J, Pantoya M L. Combust. Flame, 2004,138(4):373-383

    10. [10]

      [10] Pantoya M L, Granier J J. Propellants Explos. Pyrotech., 2005,30(1):53-62

    11. [11]

      [11] Bhattacharya S, Gao Y, Apperson S, et al. J. Energ. Mater., 2006,24(1):1-15

    12. [12]

      [12] Gash A E, Tillotson T M, Satcher J H, et al. Chem. Mater., 2001,13(3):999-1007

    13. [13]

      [13] Prakash A, McCormick A V, Zachariah M R. Chem. Mater., 2004,16(8):1466-1471

    14. [14]

      [14] Prentice D, Pantoya M L, Clapsaddle B J. J. Phys. Chem., B, 2005,109(43):20180-20185

    15. [15]

      [15] Clapsaddle B J, Sprehn D W, Gash A E, et al. J. Non-Cryst. Solids, 2004,350(1):173-181

    16. [16]

      [16] Prakash A, McCormick A V, Zachariah M R. Nano Lett., 2005,5(7):1357-1360

    17. [17]

      [17] K. B. Plantier. Combust. Flame, 2005,140:299-309

    18. [18]

      [18] Sun J, Pantoya M L, Simon S L. Thermochim. Acta, 2006, 444(2):117-127

    19. [19]

      [19] Moore K, Pantoya M L. Propellants Explos. Pyrotech., 2006, 31(3):182-187

    20. [20]

      [20] Cheng J L, Hng H H, Ng H Y, et al. J. Phys. Chem. Solids, 2010,71:90-94

    21. [21]

      [21] Kim S H, Zachariah M R. Adv. Mater., 2004,16(20):1821-1825

    22. [22]

      [22] Rajesh S, Senthil S. Propellants Explos. Pyrotech., 2008,33 (2):122-130

    23. [23]

      [23] AN Ting(安亭), ZHAO Feng-Qi(赵凤起), ZHANG Ping-Fei (张平飞). Summarization(Zongshu), 2009,6(6):60-67

    24. [24]

      [24] Zhang K L, Rossi C, Petrantoni M, et al. J. Microelectromech. Syst., 2008,17(4):832-836

    25. [25]

      [25] Tillotson T M, Gash A E, Simpson R L, et al. J. Non-Cryst. Solids, 2001,285(1):338-345

    26. [26]

      [26] ZHOU Chao(周超), LI Guo-Ping(李国平), LUO Yun-Jun(罗 运军). New Chem. Mater.(Huagong Xinxing Cailiao), 2010, 38(zl):4-7

    27. [27]

      [27] Cheng J L, Hng H H, Lee Y W, et al. Combust. Flame, 2010,157:2241-2249

    28. [28]

      [28] WANG Yi(王毅), LI Feng-Sheng(李凤生), JIANG Wei(姜炜), et al. Initiators Pyrotechnics(Huogongpin), 2008,4:11-14

    29. [29]

      [29] WANG Xiao-Qian(王晓倩), ZHANG Lin(张琳), ZHU Shun-Guan(朱顺官), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(11):2313-2320

    30. [30]

      [30] Malynych S, Luzinov I, Chumanov G. J. Phys. Chem., B, 2002,106,1280-1289

    31. [31]

      [31] Wang Y, Jiang W, Liang L X, et al. Rare Metal Mat. Eng., 2012,4(1):0009-0013

  • 加载中
    1. [1]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    2. [2]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    3. [3]

      Na Li Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134

    4. [4]

      Kai ZhouAo SunYuchao WangHang DongChenkai BaiYidian MoXuyang DingXiangbao MengZhongtang LiZhongjun Li . Semisynthesis of rare chondroitin sulfate B and T oligosaccharides. Chinese Chemical Letters, 2025, 36(9): 110783-. doi: 10.1016/j.cclet.2024.110783

    5. [5]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    6. [6]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    7. [7]

      Doudou LiuWeiwei GuoGuoliang MeiYoupeng DanRong YangChao HuangYanling ZhaiXiaoquan Lu . Application of catalyst Cu-t-ZrO2 based on the electronic metal-support interaction in electrocatalytic nitrate reduction. Chinese Chemical Letters, 2025, 36(8): 110578-. doi: 10.1016/j.cclet.2024.110578

    8. [8]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    9. [9]

      Yang LiuJing LiangMengzhu ZhengHaoze SongLixia ChenHua Li . PD-L1/SHP2 dual PROTACs inhibit melanoma by enhancing T-cell killing activity. Chinese Chemical Letters, 2025, 36(6): 110317-. doi: 10.1016/j.cclet.2024.110317

    10. [10]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    11. [11]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    12. [12]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    13. [13]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    14. [14]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    15. [15]

      Zhihan ChangYuchen ZhangYuan TianXiuli Wang . Achieving high-proportioned 1T-MoS2 within heterostructures derived from polymolybdate-based complex for boosting electrocatalytic hydrogen evolution and oxygen evolution. Chinese Chemical Letters, 2025, 36(8): 110197-. doi: 10.1016/j.cclet.2024.110197

    16. [16]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    17. [17]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    18. [18]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    19. [19]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    20. [20]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

Metrics
  • PDF Downloads(0)
  • Abstract views(678)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return