Citation: CHEN Shan-Hu, CAO Yi, LAN Li, ZHAO Ming, SHI Zhong-Hua, GONG Mao-Chu, CHEN Yao-Qiang. Preparation of Mesoporous CeO2 with High Thermal Stability by Ammonium Carbonate Hydrolysis Method[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(10): 2231-2238. doi: 10.3969/j.issn.1001-4861.2013.00.219 shu

Preparation of Mesoporous CeO2 with High Thermal Stability by Ammonium Carbonate Hydrolysis Method

  • Received Date: 7 January 2013
    Available Online: 19 March 2013

    Fund Project: 国家自然科学基金(No.20803049,21173153)资助项目 (No.20803049,21173153)

  • Two series of CeO2 materials were prepared by two different synthetic routes, i.e. the conventional ammonia precipitation route (CR) and the ammonium carbonate hydrolysis route (HA) using (NH4)2CO3 in the presence of hydrogen peroxide. The formation process and decomposition behavior of the precipitates were investigated by FTIR, Raman, thermogravimetric and differential thermal analysis (TG/DTA) and X-ray photoelectron spectroscopy (XPS). The results show that the as-prepared precipitate obtained by HAconsists of O22-, CO32- and OH- species. However, after hydrothermal digestion at 80 ℃, the CO32- species is gradually hydrolyzed into OH- species. Although the chemical components of the digested precipitates prepared by these two routes are almost the same, the agglomeration of CeO2 particles is markedly modified. The CeO2 powder produced by HAexhibits higher thermal stability and better reduction property compared to that obtained by CR. After the heat treatment at 900 ℃ for 3 h, the CeO2 powder from HAroute still remains a surface area of 27 m2·g-1.
  • 加载中
    1. [1]

      [1] Matatov-Meytal Y I, Sheintuch M. Ind. Eng. Chem. Res., 1998,37(2):309-326 [2] Tikhomirov K, Krocher O, Elsener M, et al. A. Appl. Catal. B, 2006,64(1/2):72-78 [3] Sahibzada M, Steele B C H, Zheng K, et al. Catal. Today, 1997,38(4):459-466 [4] Ka?觢par J, Fornasiero P, Graziani M. Catal. Today, 1999,50 (2):285-298 [5] Di Monte R, Ka?觢par J, Catal. Today, 2005,100:27-35 [6] Di Monte R, Fornasiero P, Ka?觢par J, et al. Appl. Catal. B: Environ., 2000,24:157-167 [7] Kenevey K, Valdivieso F, Soustelle M, et al. Appl. Catal. B: Environ., 2001,29:93-101 [8] Bueno-Lopez A, Such-Basanez I, de Lecea C S M. J. Catal., 2006,244(1):102-112 [9] Nagai Y, Hirabayashi T, Dohmae K, et al. J. Catal., 2006, 242(1):103-109 [10]Perrichon V, Laachir A, Abouarnadasse S, et al. Appl. Catal. A, 1995,129:69-82 [11]Hernández W Y, Laguna O H, Centeno M A, et al. J. Solid State Chem., 2011,184:3014-3020 [12]Karakoti A S, Kuchibhatla S V N T, Babu K S, et al. J. Phys. Chem. C, 2007,111(46):17232-17240 [13]Ahniyaz A, Watanabe T, Yoshimura M. J. Phys. Chem. B, 2005,109(13):6136-6139 [14]Si R, Zhang Y W, Wang L M, et al. J. Phys. Chem. C, 2007,111(2):787-794 [15]Xian C N, Li H, Chen L Q, et al. Micropor. Mesopor. Mat., 2011,142:202-207 [16]Thammachart M, Meeyoo V, Risksomboon T, et al. Catal. Today, 2001,68(1-3):53-61 [17]Fan J, Wu X D, Yang L, et al. Catal. Today, 2007,126(3/4): 303-312 [18]Ni C Y, Li X Z, Chen Z G, et al. Micropor. Mesopor. Mater., 2008,115:247-252 [19]Terribile D, Trovarelli A, de Leitenburg C, et al. Chem. Mater., 1997,9(12):2676-2678 [20]Terribile D, Trovarelli A, Llorca J, et al. J. Catal., 1998,178 (1):299-308 [21]Chen H R, Ye Z Q, Cui X Z, et al. Micropor. Mesopor. Mater., 2011,143:368-374 [22]Mokkelbost T, Kaus I, Grande T, et al. Chem. Mater., 2004, 16(25):5489-5494 [23]Heo I, Choung J W, Kim P S, et al. Appl. Catal. B, 2009,92 (1/2):114-125 [24]Woodhead J L, US Patent, 4231893. 1980-11-04 [25]Scholes F H, Soste C, Hughes A E, et al. Appl. Surf. Sci., 2006,253(4):1770-1780 [26]Scholes F H, Hughes A E, Hardin S G, et al. Chem. Mater., 2007,19(9):2321-2328 [27]Chen P L, Chen I W. J. Am. Ceram. Soc., 1997,80(3):637- 645 [28]Rebellato J, Natile M M, Glisenti A. Appl. Catal. A, 2008, 339(2):108-120 [29]Li J G, Ikegami T, Mori T, et al. Chem. Mater., 2001,13(9): 2913-2920 [30]Djuricic B, Pickering S. J. Eur. Ceram. Soc., 1999,19(11): 1925-1934 [31]Binet C, Daturi M, Lavalley J C. Catal. Today, 1999,50(2): 207-225 [32]Natile M M, Boccaletti G, Glisenti A. Chem. Mater., 2005, 17(25):6272-6286 [33]Lin W Y, Frei H. J. Am. Chem. Soc., 2002,124(31):9292- 9298 [34]Klissurski D G, Uzunova E L. Chem. Mater., 1991,3(6):1060 -1063 [35]Jobbagy M, Marino F, Schobrod B, et al. Chem. Mater., 2006,18(7):1945-1950 [36]Ka?觢par J, Fornasiero P. J. Solid State Chem., 2003,171(1/2): 19-29 [37]Weng X L, Perston B, Wang X Z, et al. Appl. Catal. B: Environ., 2009,90:405-415 [38]Pushkarev V V, Kovalchuk V I, d'Itri J L. J. Phys. Chem. B, 2004,108:5341-5348 [39]Zhang G J, Shen Z R, Liu M, et al. J. Phys. Chem. B, 2006, 110(51):25782-25790 [40]Alifanti M, Baps B, Blangenois N, et al. Chem. Mater., 2003,15(2):395-403 [41]Darnyanova S, Pawelec B, Arishtirova K, et al. Appl. Catal. A, 2008,337(1):86-96 [42]Wang J, Wen J, Shen M Q. J. Phys. Chem. C, 2008,112(13): 5113-5122 [43]Rohart E, Larcher O, Deutsch S, et al. Top Catal, 2004,30- 31:417-423 [44]Ka?觢par J, Fornasiero P, Hickey N. Catal. Today, 2003,77: 419-449 [45]Von Weimarn P P. Chem. Rev., 1925,2(2):217-242 [46]Bruce L A, Hoang M, Hughes A E, et al. Appl. Catal. A, 1996,134(2):351-362 [47]Masui T, Peng Y M, Machida K, et al. Chem. Mater., 1998, 10(12):4005-4009

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(0)
  • Abstract views(184)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return