Citation: JIANG Wen, LIU Jun-Xue, FENG Juan, WANG Ji-Zhuang, LI Yan-Peng, AN Chang-Hua. SiO2@AgCl:Ag Nanocomposites:an Efficient Plasmonic Photocatalyst for Degradation of Rhodamine B under Visible-Light Irradiation[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(8): 1753-1758. doi: 10.3969/j.issn.1001-4861.2013.00.187 shu

SiO2@AgCl:Ag Nanocomposites:an Efficient Plasmonic Photocatalyst for Degradation of Rhodamine B under Visible-Light Irradiation

  • Received Date: 10 January 2013
    Available Online: 8 March 2013

    Fund Project: 国家自然科学基金 (No.21001116) (No.21001116)中石油创新基金 (No.2010D-5006-0505) 资助项目。 (No.2010D-5006-0505)

  • A plasmonic AgCl:Ag nanoparticles supported on SiO2 has been prepared using polyol precipitation method followed by photoreduction. On the basis of characterization, it was found that SiO2@AgCl:Ag nanoparticles exhibit shaped cube-tetrapods. The as-prepared catalysts show strong absorption in visible region due to surface plasmon resonance of Ag nanograins, which are beneficial for photocatalytic degradation of toxic persistent organic pollutants, e.g., rhodamine B, under visible light irradiation. For example, only two minutes was taken to decompose rhodamine B molecules with the assistance of SiO2@AgCl:Ag. Furthermore, radical scavenger effects demonstrate that O2·- and ·OH radicals are main active oxidation species in photocatalytic reaction. These features mean SiO2@AgCl:Ag can find applications in the fields of water disinfection and environmental remediation.
  • 加载中
    1. [1]

      [1] Hoffmann M R, Martin S T, Choi W, et al. Chem. Rev., 1995,95(1):69-96

    2. [2]

      [2] Warren S C, Thimsen E. Energy Environ. Sci., 2012,5(1): 5133-5146

    3. [3]

      [3] Chen C C, Ma W H, Zhao J C. Chem. Soc. Rev., 2010,39 (11):4206-4219

    4. [4]

      [4] Linic S, Christopher P, Ingram D B. Nat. Mater., 2011,10 (12):911-921

    5. [5]

      [5] Tong H, Ouyang S X, Bi Y P, et al. Adv. Mater., 2012,24(2): 229-251

    6. [6]

      [6] TANG Yu-Chao(唐玉朝), HUANG Xian-Huai(黄显怀), YU Han-Qing(俞汉青), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2005,21(11):1747-1751

    7. [7]

      [7] CHANG Lin(常琳), LIU Jing-Bing(刘晶冰), WANG Jin-Shu (王金淑), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(5):744-748

    8. [8]

      [8] CHEN Xiao-Yun(陈孝云), LU Dong-Fang(陆东芳), ZHANG Shu-Hui(张淑惠), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2012,28(2):307-313

    9. [9]

      [9] Wang P, Huang B B, Qin X, et al. Angew. Chem. Int. Ed., 2008,47(41):7931-7933

    10. [10]

      [10] Zhou X F, Hu C, Hu X X, et al. J. Phys. Chem. C, 2010, 114(6):2746-2750

    11. [11]

      [11] Yu J G, Dai G P, Huang B B. J. Phys. Chem. C, 2009,113 (37):16394-16401

    12. [12]

      [12] Elahifard M R, Rahimnejad S, Haghighi S, et al. J. Am. Chem. Soc., 2007,129(31):9552-9553

    13. [13]

      [13] Hu C, Hu X X, Wang L S, et al. Environ. Sci. Technol., 2006,40(24):7903-7907

    14. [14]

      [14] Guo J F, Ma B, Yin A, et al. J. Hazard. Mater., 2012,211: 77-82

    15. [15]

      [15] CAO Jing(曹静), LUO Bang-De(罗邦德), LIN Hai-Li (林海莉), et al. Environ. Chem., 2011,30(5):983-988

    16. [16]

      [16] WANG En-Hua(王恩华), LIU Su-Wen(刘素文), LI Tang-Gang(李堂刚), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(3):537-541

    17. [17]

      [17] Cao J, Luo B D, Lin H L, et al. J. Hazard. Mater., 2011,190 (1/2/3):700-706

    18. [18]

      [18] Hu C, Peng T W, Hu X X, et al. J. Am. Chem. Soc., 2010, 132(2):857-862

    19. [19]

      [19] Zhu M S, Chen P L, Liu M H. ACS Nano, 2011,5(6):4529-4536

    20. [20]

      [20] Cheng H F, Huang B B, Dai Y, et al. Langmuir, 2010,26(9): 6618-6624

    21. [21]

      [21] Cheng H H, Huang B B, Wang P, et al. Chem. Commun., 2011,47(25):7054-7056

    22. [22]

      [22] Rodrigues S, Uma S, Martyanov I N, et al. J. Catal., 2005, 233(2):405-410

    23. [23]

      [23] Kakuta N, Goto N, Ohkita H, et al. J. Phys. Chem. B, 1999, 103(29):5917-5919

    24. [24]

      [24] Stöber W, Fink A. J. Colloid Interface Sci., 1968,26(1):62-69

    25. [25]

      [25] An C H, Peng S, Sun Y G. Adv. Mater., 2010,22(23):2570-2574

    26. [26]

      [26] Wang J Z, An C H, Zhang M Y, et al. Can. J. Chem., 2012, 90(10):858-864

    27. [27]

      [27] Wang P, Huang B B, Lou Z Z, et al. Chem. Eur. J., 2010,16 (2):538-544

    28. [28]

      [28] Hsiao C N, Huang K S. J. Appl. Polym. Sci., 2005,96(5): 1936-1942

    29. [29]

      [29] Guiu G, Grange P. J. Catal., 1995,156(1):132-138

    30. [30]

      [30] Lassaletta G, Fernfindez A, Espinós J P, et al. J. Phys. Chem., 1995,99(5):1484-1490

    31. [31]

      [31] Ndiege N, Chandrasekharan R, Radadia A D, et al. Chem. Eur. J., 2011,17(27):7685-7693

    32. [32]

      [32] Tejeda J, Shevchick N J, Braun W, et al. Phys. Rev. B, 1975, 12(4):1557-1566

    33. [33]

      [33] Hamilton J F. Photogr. Sci. Eng., 1974,18(5):493-500

    34. [34]

      [34] Soni S S, Henderson M J, Bardeau J F, et al. Adv. Mater., 2008,20(8):1493-1498

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(0)
  • Abstract views(209)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return