Citation: GUO Ming, HUANG Feng-Qin, LIU Mi-Mi, LI Ming-Hui. Performance of Binding Interaction between Cr(Ⅵ) and Serum Proteome[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 1037-1044. doi: 10.3969/j.issn.1001-4861.2013.00.159 shu

Performance of Binding Interaction between Cr(Ⅵ) and Serum Proteome

  • Corresponding author: GUO Ming, 
  • Received Date: 25 December 2012
    Available Online: 31 January 2013

    Fund Project: 国家自然科学基金(No.20877072) (No.20877072)浙江科技厅公益项目(No.2012C37055) 资助项目。 (No.2012C37055)

  • The binding reaction between heavy metal ions Cr(Ⅵ) and serum proteome was investigated using affinity capillary electrophoresis(ACE) method. Based on the site binding model, a model about the interaction between Cr(Ⅵ) as the ligand and FBS as the receptor, was established. The binding performance of heavy metal ions Cr(Ⅵ) and the serum proteome was studied under proteomic conditions, and the results showed that, Cr(Ⅵ)-protein complexes formed between Cr(Ⅵ) and the high abundance component albumin in FBS, such as albumin (bovine serum albumin, BSA), transferrin protein (Bovine apo transferrin, bATF), immunogolobulin (Bovine IgG, IgG) and so on, and the binding reactions of Cr(Ⅵ) -FBS are fast equilibrium reactions. The apparent binding constant was determined through non-linear fitting binding reaction and based on changes of the effective mobility, and KCr(Ⅵ)-bATF=1.27×104 L·mol-1, KCr(Ⅵ)-IgG=4.91×104 L·mol-1, KCr(Ⅵ)-BSA=8.98×104 L·mol-1. Dosage-dependent effect exists among the concentration of Cr(Ⅵ) and the strength of the binding reactions. This work has referential meaning for understanding deeply the binding reaction mechanism of chromium(Ⅵ) with serum proteome.
  • 加载中
    1. [1]

      [1] Jacobs J M, Adkins J N, Qian W J, et al. J. Proteome Res., 2005,4:1073-1085

    2. [2]

      [2] Costa M. Toxicol. Appl. Pharmacol., 2003,188(1):1-5

    3. [3]

      [3] Gray H B. Proc. Natl. Acad. Sci. USA, 2003,100(7):3563- 3568

    4. [4]

      [4] WANG Rui(王锐), BAI Yan(白燕), LIANG Zhi-Hong(梁志红), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2010,26 (12):3225-3229

    5. [5]

      [5] Dai L B, Zhou C Z, Yuan S G. J. Chem. Eng. Chinese Universities, 2012,26(4):674-678

    6. [6]

      [6] ZHANG Hai-Rong(张海蓉), BIAN He-Dong(边贺东), NI Shou-Hai(倪寿海), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2009,25(2):306-311

    7. [7]

      [7] SHEN Xin-Can(沈星灿), BIAN He-Dong(边贺东), TU Chu- Qiao(涂楚桥), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2000,16(1):73-78

    8. [8]

      [8] ZHANG Fang(张芳), LIN Dong-Hai(林东海). Chin. J. Magnet. Resonance (Bopuxue Zazhi), 2009,26(1):136-149

    9. [9]

      [9] LIANG Yan-Qiu(梁彦秋), LIU Ting-Ting(刘婷婷), FEI Hong-Bo(费洪博), et al. J. Anal. Sci. (Fenxi Kexue Xuebao), 2007,23(3):303-306

    10. [10]

      [10] Ye Q, Hu R, Lin Z Y, et al. Chem. J. Chinese Universities, 2006,27(8):1552-1554

    11. [11]

      [11] Anwesha B, Kaushik B, Pradeep K S. J. Photochem. Photobiol. B: Biology, 2008,90(1):33-40

    12. [12]

      [12] Auda S H, Mrestani Y, Ahmed A M S, et al. Electrophoresis, 2010,30(6):1066-1070

    13. [13]

      [13] Rundlett K L, Armstrong D W. Electrophoresis, 2001,22(7): 1419-1427

    14. [14]

      [14] Tanaka Y, Terebe S. J. Chromatogra. B, 2002,768(1):81-92

    15. [15]

      [15] Urbaniak B, Mrestani Y, Kokot Z J, et al. Chromatographia, 2007,65(7/8):489-492

    16. [16]

      [16] LIU Yong(刘勇), XIA Zhi-Ning(夏之宁), LI Hui(李晖). Chin. J. Anal. Chem.(Fenxi Huaxue), 2005,33(12):1733-1736

    17. [17]

      [17] LI Bo(李博),LIU Wen-Ying(刘文英). Prog. Pharmaceut. Sci. (Yaoxue Jinzhan), 2003,27(2):81-84

    18. [18]

      [18] Castagnola M, Rossetti D V, Tnzitari R, et al. Electrophoresis, 2003,24(5):801-807

    19. [19]

      [19] Hu J, Lo M C, Chen G H. Sep. Purif. Technol., 2007,56(3): 249-256

    20. [20]

      [20] YUN Qing-Xing(邢云青). Thesis for the Doctorate of Zhejiang University(浙江大学博士论文). 2007.

    21. [21]

      [21] WANG Chang(王畅), ZHENG Yu-Fang(郑育芳), XIONG Jian-Hui (熊建辉), et al. Acta Chim. Sin. (Huaxue Xuebao), 2004,62(3):279-282

    22. [22]

      [22] Deng B Y, Wang Y Z, Zhu P C, et al. Anal Chim. Acta, 2010,683(1): 58-62

    23. [23]

      [23] Michael T, Bowser , David D. J. Phys. Chem., 1999,103(1): 197-202

    24. [24]

      [24] Benjamin J, Cargile, Jonathan L, et al. J. Proteome Res., 2004, 3(1):112-119

    25. [25]

      [25] Rosenfeld S I, Looney R J, Leddy J P. J. Chin. Invest, 1985,76(6):2317-2322

    26. [26]

      [26] Saksena S, Zydney A L. Biotechnol. Bioengi., 1994,43(10): 960-968

    27. [27]

      [27] GUO Ming(郭明), LIU Mi-Mi(刘咪咪), LI Ming-Hui(李铭慧), et al. Chin. J. Anal. Chem. (Fenxi Huaxue), 2012,40(2):268- 272

    28. [28]

      [28] Zhang P J, Lan P, Ma Y N , et al. J. Biochem. Mol. Toxicol., 2012,26(2):54-59

    29. [29]

      [29] LI Xiao-Feng(李晓峰). Thesis for the Masterate of Tianjin University(天津大学硕士论文), 2003.

    30. [30]

      [30] YU Wen-Peng(于文鹏). Thesis for the Masterate of Beijing Forestry University (北京林业大学硕士论文). 2005.

    31. [31]

      [31] Michael V, Ellen V, Roland B. J. Proteomics, 2012,75(18): 5848-5860

    32. [32]

      [31] YUAN Pei(袁佩), XIA Zhi-Ning(夏之宁), LIU Yong(刘勇). Chin. J. Instrument. Anal.(Fenxi Ceshi Xuebao), 2001,20(1): 79-83

    33. [33]

      [32] Liu Y, Zhang S Y, Ling X M, et al. J. Peptide Sci., 2008,14 (8):984-988

    34. [34]

      [33] Allen S J, Crown S E, Handel T M. Annu. Rev. Immunol., 2007,25(1):787-820

    35. [35]

      [34] Kraly J, Fazal M A, Schoenherr R M, et al. Anal. Chem., 2006,78(1):4097-4110

    36. [36]

      [35] ZHAO Yan-Fang(赵艳芳), FU Chong-Gong(傅崇岗), LIU Ai-Lin(刘爱林). Chin. J. Chromatography (Sepu), 2003,21 (2):126-130

    37. [37]

      [36] Michael V, Ellen V, Roland B. J. Proteomics, 2012,75(18): 5848-5860

    38. [38]

      [37] Dudev T, Lim C. Annu. Rev. Biophys., 2008,37(1):97-116

    39. [39]

      [38] HE Wen-Ying(何文英), YAO Xiao-Jun(姚小军), LIU Peng- Jun(刘鹏军), et al. Sci. China Chem.(ZhongguoKexue), 2007,37(1):54-63

  • 加载中
    1. [1]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    2. [2]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    3. [3]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    4. [4]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Zhongsen WangLijun QiuYunhua HuangMeng ZhangXi CaiFanyu WangYang LinYanbiao ShiXiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195

    7. [7]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    8. [8]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    9. [9]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    10. [10]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    11. [11]

      Quanquan LiChenzhu ZhaoShanshan JiaQiang ChenXusheng LiMengyao SheHua LiuPing LiuYaoyu WangJianli Li . Design and fabrication of CuI/CuII-MOF-incorporated hydrogel photocatalysts for synergy removal of Cr(VI) and congo red. Chinese Chemical Letters, 2025, 36(5): 109936-. doi: 10.1016/j.cclet.2024.109936

    12. [12]

      Xiaoqiang WangFangyuan ZhouYue LiuZhongbiao Wu . CePO4 supported Cr catalyst with superior sulfur tolerance for selective catalytic oxidation of ammonia. Chinese Chemical Letters, 2025, 36(7): 110420-. doi: 10.1016/j.cclet.2024.110420

    13. [13]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    14. [14]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    15. [15]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    16. [16]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    18. [18]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    19. [19]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    20. [20]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

Metrics
  • PDF Downloads(0)
  • Abstract views(631)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return