Citation: ZHUO Na, LI Li, GAO Yu, LU Lu, HUANG Xian-Dan, WANG Li-Li. CTAB-Assisted Synthesis of Nano-Composite Ag/ZnO-TiO2 and Its UV Photocatalytic Activity[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 991-998. doi: 10.3969/j.issn.1001-4861.2013.00.156 shu

CTAB-Assisted Synthesis of Nano-Composite Ag/ZnO-TiO2 and Its UV Photocatalytic Activity

  • Corresponding author: LI Li, 
  • Received Date: 25 December 2012
    Available Online: 1 February 2013

    Fund Project: 黑龙江省自然科学基金 (No.B201106) (No.B201106)黑龙江省教育厅科学技术项目(No.12511592) (No.12511592)黑龙江省政府博士后资助经费(No.LBH-Z11108) (No.LBH-Z11108) 黑龙江省研究生创新科研项目(No.YJSCX2011-199HLJ) (No.YJSCX2011-199HLJ)齐齐哈尔大学研究生创新科研项目(No.YJSCX2010-017X)资助项目。 (No.YJSCX2010-017X)

  • The nano-composites Ag/ZnO-TiO2 under cetyltrimethylammonium bromide(CTAB) were prepared with molar ratio of 0.1:2:1 about Ag:Zn:Ti by the sol-gel method combined with temperature-programmed treatment. The phase composition, structures and morphologies of the nano-composite Ag/ZnO-TiO2 by post-processing methods of calcination at different temperature(500, 600, 700 ℃) and time(5 h, 7 h) were well-characterized by X-ray diffraction(XRD), and UV-visible diffuse reflectance spectrometer(UV-Vis/DRS), and X-ray photoelectron spectroscopy(XPS), and Transmission electron microscopy(TEM), and Scanning electron microscopy combined with X-ray energy dispersive spectroscopy(SEM-EDS) and N2 adsorption-desorption measurement. Results showed that a series of composites had not only the ZnO wurtzite and TiO2 anatase structures, meanwhile, part Zn2TiO4 were generated and silver species existing in the nano-composite Ag/ZnO-TiO2 was metallic Ag0. By the method changed calcination temperature and time, different nano-composites Ag/ZnO-TiO2(CTAB) showed nanowires and nano-ball morphology, moreover, which were uniformly distribution. By the photocatalytic degradation of RB, under UV light irradiation, the results showed that the activities of sample calcined at different time and temperature were obvious distinction.
  • 加载中
    1. [1]

      [1] Yang X, Xu L L, Yu X D, et al. Catal. Commun., 2008,9(6): 1224-1229

    2. [2]

      [2] Chen F, Zou W W, Qu W W, et al. Catal. Commun., 2009,10 (11):1510-1513

    3. [3]

      [3] Yang X, Wang Y H, Xu L L, et al. J. Phys. Chem. C, 2008, 112(30):11481-11489

    4. [4]

      [4] LI Li(李莉), LU Dan(陆丹), ZHAO Yue-Hong(赵月红), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2011,27(3): 451-456

    5. [5]

      [5] Guo G M, Yu B B, Yu P, et al. Talanta, 2009,79(3):570-575

    6. [6]

      [6] Wang C H, Shao C L, Zhang X T, et al. Inorg. Chem., 2009, 48(15):7261-7268

    7. [7]

      [7] Wang J, Li J, Zhang L Q, et al. Catal. Lett., 2009,130(3/4): 551-557

    8. [8]

      [8] LI Li(李莉), MA Yu(马禹), CAO Yan-Zhen(曹艳珍), et al. Acta Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2009,25(7): 1461-1466

    9. [9]

      [9] He Z Y, Li Y G, Zhang Q G, et al. Appl. Catal. B, 2010,93 (3/4): 376-382

    10. [10]

      [10] Xu L, Steinmiller E M P, Skrabalak S E. J. Phys. Chem. C, 2010,116(1):871-877

    11. [11]

      [11] Chen D, Zhang H, Hu S, et al. J. Phys. Chem. C, 2008,112 (1):117-122

    12. [12]

      [12] Lin D D, Hui W, Zhang R, et al. J. Chem. Mater., 2009,21 (15):3479-3484

    13. [13]

      [13] Lu W W, Gao S Y, Wang J J. J. Phys. Chem. C, 2008,112 (43):16792-16800

    14. [14]

      [14] Kuai L, Geng B Y, Chen X T, et al. Langmuir., 2010,26(24): 18723-18727

    15. [15]

      [15] Yang Z J, Lv L L, Dai Y L, et al. Appl. Surf. Sci., 2010,256 (9):2898-2902

    16. [16]

      [16] Yang Y Q, Du G H, Xin X, et al. Appl. Phys. A, 2011,104 (4):1229-1235

    17. [17]

      [17] LI Li(李莉), ZHUO Na(禚娜), GAO Yu(高宇), et al. Chem. J. Chinese Universities(Gaodeng XueXiao Huaxue Xuebao), 2012,33(6):1264-1270

    18. [18]

      [18] Zhang H, Wang G, Chen D, et al. Chem. Mater., 2008,20 (20):6543-6549

    19. [19]

      [19] Sasaoka E, Sada N, Manabe A, et al. Ind. Eng. Chem. Res., 1999,38(3):958-963

    20. [20]

      [20] Nolan N T, Seery M K, Pillai S C. Chem. Mater., 2011,23(6): 1496-1504

    21. [21]

      [21] Liu R L, Huang Y X, Xiao A H, et al. J. Alloys Compd., 2010,503(1):103-110

    22. [22]

      [22] Wang T, Jiang X, Mao C W. Langmuir, 2008,24(24):14042- 14047

    23. [23]

      [23] Sun T J, Qiu J S, Liang C H. J. Phys. Chem. C, 2008,112 (3):715-721

    24. [24]

      [24] Ou H H, Lo S L, Liao C H. J. Phys. Chem. C, 2011,115 (10):4000-4007

    25. [25]

      [25] Wu T S, Wang K X, Li G D, et al. ACS. Appl Mater&Inter., 2010,2(2):544-550

    26. [26]

      [26] Moulder J F, Stick W F, Sobol P E, et al. Handbook of X- ray Photoelectron Spectroscopy [M] . Eden Prairie: Perkin- Elmer. Corp, 1992:pp182183

    27. [27]

      [27] Ren W, Ai Z, Jia F, et al. Appl. Catal. B, 2007,69(3/4):138- 144

    28. [28]

      [28] Xin B F, Jing L Q, Ren Z Y, et al. J. Phys. Chem. B, 2005, 109(7):2805-2809

    29. [29]

      [29] Poyraz A S, Dag O. J. Phys. Chem. C, 2009,113(43):18596- 18607

    30. [30]

      [30] Sing K S W, Everett D H, Haul R A W. Pure. Appl. Chem., 1985,57(4):603-619

    31. [31]

      [31] ZOU Wen(邹文), HAO Wei-Chang(郝维昌), XIN Xin(信心), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2009, 25(11):1971-1976

    32. [32]

      [32] Wen Z H, Wang G, Lu W, et al. Cryst. Growth Des., 2007,7 (9):1722-1725

    33. [33]

      [33] Sudeep P K, Kamat P V. Chem. Mater., 2010,17(22):5404- 5410

    34. [34]

      [34] Gu C D, Cheng C C, Huang H Y, et al. Cryst. Growth Des., 2009,9(7):3278-3285

    35. [35]

      [35] Ldgar M, Jancar B, Sturm S, et al. Langmuir, 2010,26(14): 12215-12224

    36. [36]

      [36] Lei Y Z, Zhao G H, Liu M C, et al. J. Phys. Chem. C, 2009, 113(44):19067-19076

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    4. [4]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    5. [5]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    10. [10]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    11. [11]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    14. [14]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    15. [15]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    16. [16]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(452)
  • Abstract views(543)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return