Citation: GUO Yin-Tao, YE Qin, XIANG Jun, XU Jia-Huan. Effect of Strontium and Cobalt Co-doping on the Structural and Electrical Properties of PrAlO3 Perovskite Oxides[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 958-964. doi: 10.3969/j.issn.1001-4861.2013.00.155 shu

Effect of Strontium and Cobalt Co-doping on the Structural and Electrical Properties of PrAlO3 Perovskite Oxides

  • Corresponding author: XIANG Jun, 
  • Received Date: 25 December 2012
    Available Online: 31 January 2013

    Fund Project: 国家自然科学基金(No.11204108) (No.11204108)江苏省高校自然科学基金(No.11KJB430006) (No.11KJB430006)江苏省普通高校研究生科研创新计划(No.CXLX11-0293) 资助项目。 (No.CXLX11-0293)

  • Novel Sr- and Co-codoped (Pr,Sr)(Al,Co)O3-δ perovskite oxide conducting ceramics were prepared by citrate process combined with subsequent high-temperature sintering. The phase composition, microstructure and electrical properties of the obtained ceramics were characterized by XRD, SEM and direct current four-wire method. The experimental results show that all the as-prepared Pr0.9Sr0.1Al1-yCoyO3-δ(y=0.1~0.5) ceramics are a single-phase rhombohedral perovskite structure, and their unit cell volumes, relative densities and electrical conductivities increase with increasing y in the doping range, while the increasing rate in electrical conductivity progressively decrease. Furthermore, these samples are a mixed conductor of oxygen ion and hole in air and their electrical conductivities are absolutely dominated by p-type conduction. The temperature dependence of electrical conductivity for Pr0.9Sr0.1Al1-yCoyO3-δ can be described by the small polaron hopping mechanism. For the as-prepared Pr1-xSrxAl0.5Co0.5O3-δ(x=0.1~0.4) ceramics, a second phase (Pr,Sr)CoO3 obviously precipitates when x=0.2, indicating that the solid solubility limit of Sr on A site in this system is between 10at% and 20at%, and the (Pr, Sr)CoO3 phase in samples increases gradually and finally becomes the main phase with further increase in Sr content. It is found that the electrical conductivity of Pr1-xSrxAl0.5Co0.5O3-δ ceramics roughly exhibits a trend of first increase and then decrease with increasing x in the whole examined temperature range, and reaches the maximum value at around x=0.3. Additionally, the semiconductor-to-metal transition in the conduction behavior is obviously observed for the samples with x≥0.2, and the transition temperature gradually decreases with increasing Sr content.
  • 加载中
    1. [1]

      [1] CHEN Yong-Hong(陈永红), WEI Yi-Jun(魏亦军), LIU Xing-Qin(刘杏芹), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2006,22(1):31-36

    2. [2]

      [2] SHAO Zong-Ping(邵宗平). Prog. Chem. (Huaxue Jinzhan), 2011, 23(2/3):418-429

    3. [3]

      [3] XU Hong-Mei(徐红梅). Mater. Rev. (Cailiao Daobao), 2012,26(7):16-19

    4. [4]

      [4] Yin Y M, Xiong M W, Yang N T, et al. Int. J. Hydrogen. Energy, 2011,36:3989-3996

    5. [5]

      [5] Park S, Choi S H, Shin J Y, et al. J. Power Sources, 2012, 210:172-177

    6. [6]

      [6] Choi S H, Yoo S, Shin J Y, et al. J. Electrochem. Soc., 2011,158(8):B995-B999

    7. [7]

      [7] Guo Y, Shi H, Ran R, et al. J. Hydrogen. Energy, 2009,34: 9496-9504

    8. [8]

      [8] Baek S W, Bae J, Yoo Y S. J. Power Sources, 2009,193:431- 440

    9. [9]

      [9] Meng X W, Lü S Q, Ji Y, et al. J. Power Sources, 2008, 183:581-585

    10. [10]

      [10] Torres-Garibay C, Kovar D, Manthiram A. J. Power Sources, 2009,187:480-486

    11. [11]

      [11] Ren Y Z, Li B A, Wang J Y, et al. J. Solid State Chem., 2004,177:3977-3980

    12. [12]

      [12] YANG Nai-Tao(杨乃涛), FENG Liu(冯柳), TAN Xiao-Yao (谭小耀), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2005,21(11):1623-1626

    13. [13]

      [13] Lee K T, Manthiram A. J. Electrochem. Soc., 2006,153(4): A794-A798

    14. [14]

      [14] Zhu C J, Liu X M, Xu D, et al. J. Power Sources, 2008, 185:212-216

    15. [15]

      [15] Fu Q X, Tietz F, Lersch P, et al. Solid State Ionics, 2006, 177:1059-1069

    16. [16]

      [16] Tsipis E V, Kharton V V, Waerenborgh J C, et al. J. Alloys Compd., 2006,413:244-250

    17. [17]

      [17] XIANG Jun(向军), GUO Ying-Tao(郭银涛), CHU Yan-Qiu (褚艳秋), et al. Acta Phys. Sin. (Wuli Xuebao), 2011,60(2): 027203

    18. [18]

      [18] XIANG Jun(向军), GUO Ying-Tao(郭银涛), ZHOU Guang- Zhen(周广振), et al. Acta Phys. Sin. (Wuli Xuebao), 2012, 61(22): 227201

    19. [19]

      [19] Ishihara T. Perovskite Oxide for Solid Oxide Fuel Cells. New York: Springer, 2009:68-69

    20. [20]

      [20] XU Jia-Huan(徐加焕), HUANG Xi-Qiang(黄喜强), LV Zhe (吕喆), et al. Acta Chim. Sin. (Huaxue Xuebao), 2006,64(5): 449- 452

    21. [21]

      [21] XU Qing(徐庆), HUANG Duan-Ping(黄端平), CHEN Wen (陈文), et al. J. Chinese Rare Earth Soc. (Zhongguo Xitu Xuebao), 2003,21(5):541-545

    22. [22]

      [22] Kostogloudis G Ch, Ftikos Ch. J. Eur. Ceram. Soc., 2007, 27:273-277

    23. [23]

      [23] Basu S, Chakraborty A, Devi P S, et al. J. Am. Ceram. Soc., 2005,88:2110-2113

    24. [24]

      [24] Kostogloudis G Ch, Vasilakos N, Ftikos Ch. Solid State Ionics, 1998,106:207-218

    25. [25]

      [25] Fu Q X, Xu Z Y, Peng D K, et al. J. Mater. Sci., 2003,38: 2901-2906

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

Metrics
  • PDF Downloads(433)
  • Abstract views(436)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return