Citation: ZONG En-Min, WEI Dan, HUAN Zhong-Ke, PENG Du, WAN Hai-Qin, ZHENG Shou-Rong, XU Zhao-Yi. Adsorption of Phosphate by Zirconia Functionalized Multi-walled Carbon Nanotubes[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 965-972. doi: 10.3969/j.issn.1001-4861.2013.00.154 shu

Adsorption of Phosphate by Zirconia Functionalized Multi-walled Carbon Nanotubes

  • Corresponding author: XU Zhao-Yi, 
  • Received Date: 5 December 2012
    Available Online: 17 January 2013

    Fund Project: 国家自然科学基金(No.21077050, 21277069) (No.21077050, 21277069)教育部“长江学者和创新团队发展计划”(No.IRT1019) (No.IRT1019)国家“863”计划(No.2012AA062607) 和江苏省六大人才高峰项目资助项目。 (No.2012AA062607)

  • Zirconia functionalized multi-walled carbon nanotubes were successfully synthesized by hydrothermal method and their adsorption behavior for phosphate were also investigated. Characterized results showed that the BET surface areas and the total pore volumes of MWNTs decreased greatly after ZrO2 functionalization. The average particle size of zirconia that uniformly dispersed on the surface of MWNTs increased with increasing ZrO2 content. Phosphate adsorption experimental results showed that decreasing ZrO2 particle size was beneficial to improve the ZrO2 content-normalized adsorption amount and the adsorption rate. The adsorption isotherm could be well fitted by Freundlich equation which suggested a preferential adsorption, while kinetics followed the pseudo-second-order model. Lower ionic strength and pH were favorable to the removal of phosphate. And the effect of co-existing anions was in the order of F->NO3-≈SO42-.
  • 加载中
    1. [1]

      [1] Li B, Brett M T. Water Res., 2012,46:837-844

    2. [2]

      [2] Liu T, Wu K, Zeng L H. J. Hazard. Mater., 2012,217:29-35

    3. [3]

      [3] Seida Y, Nakano Y. Water Res., 2002,36:1306-1312

    4. [4]

      [4] Moriyama K, Kojima T, Minawa Y, et al. Environ. Technol., 2001,22:1245-1252

    5. [5]

      [5] Banu J R, Do K U, Yeom I T. World J. Microbiol. Biotechnol., 2008,24:2981-2986

    6. [6]

      [6] Caravelli A H, Contreras E M, Zaritzky N E. J. Hazard. Mater., 2010,177:199-208

    7. [7]

      [7] Wu H, Kosaka H, Kato J, et al. J. Biosci. Bioeng., 1999,87: 273-279

    8. [8]

      [8] Shi J, Podola B, Melkonian M. J. Appl. Phycol., 2007,19: 417-423

    9. [9]

      [9] Wu R S S, Lam K H, Lee J M N, et al. Chemosphere, 2007, 69:289-294

    10. [10]

      [10] Wartelle L H, Marshall W E. J. Environ. Manage., 2006,78: 157-162

    11. [11]

      [11] Blaney L M, Cinar S, Sengupta A K. Water Res., 2007,41: 1603-1613

    12. [12]

      [12] Zhang G S, Liu H J, Liu R P, et al. J. Colloid. Interf. Sci., 2009,335:168-174

    13. [13]

      [13] Barca C, Gerente C, Meyer D, et al. Water Res., 2012,46: 2376-2384

    14. [14]

      [14] Xue Y, Hou H, Zhu S. J. Hazard. Mater., 2009,162:973-980

    15. [15]

      [15] Kawasaki N, Ogata F, Tominaga H. J. Hazard. Mater., 2010, 181:574-579

    16. [16]

      [16] Liu H L, Sun X F, Yin C G, et al. J. Hazard. Mater., 2008, 151:616-622

    17. [17]

      [17] Shin E W, Han J S, Jang M, et al. Environ. Sci. Technol., 2004,38:912-917

    18. [18]

      [18] Khadhraoui M, Watanabe T, Kuroda M. Water Res., 2002, 36:3711-3718

    19. [19]

      [19] Tang Y, Zong E, Wan H, et al. Micropor. Mesopor. Mater., 2012,155:192-200

    20. [20]

      [20] Long F, Gong J L, Zeng G M, et al. Chem. Eng. J., 2011, 171:448-455

    21. [21]

      [21] Sarkar A, Biswas S K, Pramanik P. J. Mater. Chem., 2010, 20:4417-4424

    22. [22]

      [22] Zhu X P, Jyo A. Water Res., 2005,39:2301-2308

    23. [23]

      [23] YU Hua-Rong(于华荣), CHENG Rong-Ming(成荣明), XU Xue-Cheng(徐学诚), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2005,21(11):1649-1654

    24. [24]

      [24] FU Xiao-Bo(傅小波), YU Hao(余皓), PENG Feng(彭峰), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2006,22(6):1148-1154

    25. [25]

      [25] Liu J, Wan L, Zhang L, et al. J. Colloid. Interf. Sci., 2011, 364:490-496

    26. [26]

      [26] Yuan G, Keane M A. Appl. Catal. B: Environ., 2004,52: 301-314

    27. [27]

      [27] Hontorialucas C, Lopezpeinado A J, Lopezgonzalez J D D, et al. Carbon, 1995,33:1585-1592

    28. [28]

      [28] Chitrakar R, Tezuka S, Sonoda A, et al. J. Colloid. Interf. Sci., 2007,313:53-63

    29. [29]

      [29] Carmo A M, Hundal L S. Environ. Sci. Technol., 2000,34: 4363-4369

    30. [30]

      [30] Xiong J B, Mahmood Q. Desalination, 2010,259:59-64

    31. [31]

      [31] Trivedi H C, Patel V M, Patel R D. Eur. Polym. J., 1973,9: 525-531

    32. [32]

      [32] Ho Y S, McKay G. Process Biochem., 1999,34:451-465

    33. [33]

      [33] Hsia T H, Lo S L, Lin C F, et al. Colloid. Surface A, 1994,85:1-7

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(453)
  • Abstract views(478)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return