Citation: TANG Jing-Long, WANG Shuo, LIU Li, WANG Chun-Ren, XI Ting-Fei. A Preliminary Study on the Dose-Effect Relation when Silver Nanoparticles Crossing through the Blood-Brain Barrier in vitro[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 1025-1030. doi: 10.3969/j.issn.1001-4861.2013.00.150 shu

A Preliminary Study on the Dose-Effect Relation when Silver Nanoparticles Crossing through the Blood-Brain Barrier in vitro

  • Corresponding author: TANG Jing-Long, 
  • Received Date: 25 December 2012
    Available Online: 21 January 2013

    Fund Project: 北京市自然科学基金(No.3112024) (No.3112024)中国食品药品检定研究院中青年发展研究基金(No.2009C4)资助项目。 (No.2009C4)

  • Objective:The aim of this study was to investigate the dose-effect relation of the ability that silver nanoparticles (SNPs) crossing through the blood-brain barrier (BBB) and presume its mechanism. Methods:In this study, SNPs were test samples and silver microparticles (SMPs) acted as control samples. First, an in vitro BBB model was established. Second, SNPs or SMPs were cultured in the BBB model at different dose from 25 μg·mL-1 to 400 μg·mL-1, respectively. After 4 hours of culture, the ultrastructure of BBB and the percentage of silver particles crossing through BBB were evaluated with TEM and ICP-MS respectively. Results:Results demonstrated that SNPs crossed the BBB, while the SMPs did not. When SNPS dose<100 μg·mL-1, about 2% silver particles crossed BBB, and the BBBs ultrastructures were normal. When dose>100 μg·mL-1, the higher dose is, the more silver particles crossed BBB, and the more damage occurred in the BBBs ultrastructures. When dose=400 μg·mL-1, about 15% silver particles crossed BBB. Conclusion:The results suggested that membrane-mobile transport mechanism is the main way allowing SNPs to cross the BBB in low dose. Cytotoxicity mechanism is the main way allowing SNPs to cross the BBB in higher dose. It is also suggested that SNPs could cross the BBB even in a low dose. A cautious attitude would be hold before silver nanoparticles-based medical devices were used in clinical practice.
  • 加载中
    1. [1]

      [1] Chen X, Schluesener H J. Toxicol Lett., 2008,176(1):1-12

    2. [2]

      [2] Martinez-Castanon G A, Nino-Martinez N, Martinez-Guiterrez F, et al. J. Nanoparticle Res., 2008,10(8):1343-1348

    3. [3]

      [3] Estores I M, Olsen D, Gómez-Marin O. J Rehabil Res Dev., 2008,45(1):135-139

    4. [4]

      [4] Vlachou E, Chipp E, Shale E, et al. Burns., 2007,3(8):979- 985

    5. [5]

      [5] Roe D, Karandikar B, Bonn-Savage N, et al. J Antimicrob Chemother., 2008,61(4):869-876

    6. [6]

      [6] Takenaka S, Karg E, Roth C, et al. Environ. Health Perspect., 2001,109(Suppl 4):547-551

    7. [7]

      [7] Tang J L, Xiong L, Wang S, et al. J. Nanosci. Nanotechnol., 2009,9(8):4924-4932

    8. [8]

      [8] TANG Jing-Long(汤京龙), XI Ting-Fei(奚廷斐), WEI Li-Na (魏丽娜), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2008,24(11):1827-1831

    9. [9]

      [9] Tang J L, Xiong L, Wang S, et al. Appl. Surface Sci., 2008,255(2):502-504

    10. [10]

      [10] TANG Jing-Long(汤京龙), XI Ting-Fei(奚廷斐), XIONG Ling(熊玲),et al. Transact. Mater. Heat Treat. (Cailiao Rechuli Xuebao), 2009,30(3):6-9

    11. [11]

      [11] Tang J L, Xiong L, Zhou G F,et al. J. Nanosci. Nanotechnol., 2010,10(10):6313-6317

    12. [12]

      [12] CHENG Ling-Zhong(成令钟), ZHONG Cui-Ping(钟翠萍), CAI Wen-Qin(蔡文琴). Contemporary Histology(现代组织 学). Shanghai: Scientific and Technological Literature Publishing House, 2003.

    13. [13]

      [13] U.S. Department of Health and Human Services, Food and Drug Administration. Guidance for Industry and FDA Premarket and Design Control Reviewers Medical Device Use-Safety: Incorporating Human Factors Engineering into Risk Management[N]. [2011-08-20]. http://www.fda.gov/ MedicalDevices/ DeviceRegulationand Guidance/Guidance Documents/ucm193096.htm

    14. [14]

      [14] State Food and Drug Administration(国家食品药品监督管 理局). YY/T 0316-2008 Medical devices Application of risk management to medical devices [S]. Beijing: Standards Press of China, 2009.

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    9. [9]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(0)
  • Abstract views(170)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return