Citation: SHEN Xiao-Chen, DAI Min, GAO Ming, WANG Zhi-Bin, ZHAO Bin, DING Wei-Ping. Core-Shell Structured Cu@CoCr Catalyst: Synthesis and Catalytic Performance for Hydrolysis of Ammonia Borane Aqueous Solution[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 999-1006. doi: 10.3969/j.issn.1001-4861.2013.00.145 shu

Core-Shell Structured Cu@CoCr Catalyst: Synthesis and Catalytic Performance for Hydrolysis of Ammonia Borane Aqueous Solution

  • Corresponding author: ZHAO Bin, 
  • Received Date: 12 November 2012
    Available Online: 17 January 2013

    Fund Project: 江苏省自然科学基金(No.BK2010387) (No.BK2010387)国家自然科学基金(No.41172239) (No.41172239)中央高校基础科研业务费专项基金(No.1118020513, 1106020513)资助项目。 (No.1118020513, 1106020513)

  • The core/shell structured ternary alloy of Cu@CoCr was synthesized by a one-step in-situ synthesis method under mild conditions. The catalytic performance of Cu@CoCr was studied for the hydrolysis of NH3BH3 (AB) aqueous solution. The TOF (turn over frequency) of 0.242 0 molH2·moLcat-1·s-1 for Cu0.4@Co0.5Cr0.1 catalyst on AB hydrolysis reaction is close to the noble-metal based catalysts, such as Pt, Pd, etc. The activation energy of this catalyst is only 35 kJ·mol-1. After 5 cycles, this catalyst still keeps 35% of its initial activity. Compared to the non-core/shell structured CuCoCr alloy, the Cu@CoCr catalyst shows great improvements in activity, stability and reusability. Furthermore, the Cu@CoCr catalysts could be recovered by a magnet based on its magnetic properties.
  • 加载中
    1. [1]

      [1] Zhou L, Renew. Sust. Energ. Rev., 2005,9(4):395-408

    2. [2]

      [2] http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/hy- drogen_storage_roadmap.pdf

    3. [3]

      [3] Peng B, Chen J. Energy Environ. Sci., 2008,1(4):479-483

    4. [4]

      [4] Marder T B. Angew. Chem. Int. Ed., 2007,46(43):8116-8118

    5. [5]

      [5] Rassat S D, Aardahl C L, Smith R S, et al. Energy Fuels, 2010,24(4):2596-2606

    6. [6]

      [6] Baitalow F, Baumann J, Wolf G, et al. Thermochim. Acta, 2002,391(1-2):159-168

    7. [7]

      [7] Carpenter J D, Ault B S, Chem. Phys. Lett., 1992,197(1-2): 171-174

    8. [8]

      [8] Mohajeri N, T-Raissi A, Ramasamy K K, Thermochim. Acta, 2007,452(1):28-30

    9. [9]

      [9] Chandra M, Xu Q. J. Power Sources, 2006,156(2):190-194

    10. [10]

      [10] Xu Q, Chandra M. J. Alloys Compd., 2007,446-447:729- 732

    11. [11]

      [11] Wang P, Kang X D. Dalton Trans., 2008,40:5400-5413

    12. [12]

      [12] Umegaki T, Yan J M, Zhang X B, et al. Int. J. Hydrogen Energy, 2009,34(5):2303-2311

    13. [13]

      [13] Basu S, Brockman A, Gagare P, et al. J. Power Sources, 2009,188(1):238-243

    14. [14]

      [14] Metin Ö, Sahin S, Özkar S, Int. J. Hydrogen Energy, 2009, 34(15):6304-6313

    15. [15]

      [15] Durap F, Zahmakiran M, Özkar S, Int. J. Hydrogen Energy, 2009,34(17):7223-7230

    16. [16]

      [16] Zahmakiran M, Özkar S. Appl. Catal. B: Environ., 2009,89 (1-2):104-110

    17. [17]

      [17] Umegaki T, Yan J M, Zhang X B, et al. J. Power Sources, 2010,195(24):8209-8214

    18. [18]

      [18] Metin Ö, Özkar S. Energy Fuel, 2009,23(7):3517-3526

    19. [19]

      [19] Clark T J, Whittell G R, Manners I. Inorg. Chem., 2007,46 (18):7522-7527

    20. [20]

      [20] Yan J M, Zhang X B, Han S, et al. Angew. Chem. Int. Ed., 2008,47(12):2287-2289

    21. [21]

      [21] Fernandes R, Patel N, Miotello A. Appl. Catal. B: Environ., 2009,92(1-2):68-74

    22. [22]

      [22] Fernandes R, Patel N, Miotello A, et al. J. Mol. Catal. A: Chem., 2009,298(1-2):1-6

    23. [23]

      [23] Patel N, Fernandes R, Miotello A. J. Power Sources, 2009, 188(2):411-420

    24. [24]

      [24] Fernandes R, Patel N, Miotello A. Int. J. Hydrogen Energy, 2009,34(7):2893-2900

    25. [25]

      [25] Chen G Z, Desinan S, Nechache R, et al. Chem. Commun., 2011,47(22):6308-6310

    26. [26]

      [26] Jiang H L, Akita T, Xu Q. Chem. Commun., 2011,47(39): 10999-11001

    27. [27]

      [27] Jeong S U, Cho E A, Nam S W, et al. Int. J. Hydrogen Energy, 2007,32(12):1749-1754

    28. [28]

      [28] Retnamma R, Novais A Q, Rangel C M. Int. J. Hydrogen Energy, 2011,36(16):9772-9790

    29. [29]

      [29] Wang Y, Toshima N. J. Phys. Chem. B, 1997,101(27):5301- 5306

    30. [30]

      [30] Chen G Z, Desinan S, Rosei R, et al. Chem. Eur. J., 2012, 18(25):7925-7930

    31. [31]

      [31] Rakap M, Özkar S. Int. J. Hydrogen Energy, 2010,35(3): 1305-1312

    32. [32]

      [32] Yan J M, Zhang X B, Akita T, et al. J. Am. Chem. Soc., 2010,132(15):5326-5327

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    11. [11]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(527)
  • Abstract views(552)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return