Citation: DU Ke, HUANG Jin-Long, HU Guo-Rong, PENG Zhong-Dong, CAO Yan-Bing, TANG Cao-Pu, WANG Wei-Gang. Research on Synthesis and Performance of Composite Cathode Material Li[Ni0.92Co0.04Mn0.04]O2 with Gradient-Coating Layer as Lithium Ion Battery[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 1031-1036. doi: 10.3969/j.issn.1001-4861.2013.00.142 shu

Research on Synthesis and Performance of Composite Cathode Material Li[Ni0.92Co0.04Mn0.04]O2 with Gradient-Coating Layer as Lithium Ion Battery

  • Corresponding author: DU Ke, 
  • Received Date: 2 November 2012
    Available Online: 27 December 2012

    Fund Project: 中央高校基本科研业务费(No.2012QNZT018)资助项目。 (No.2012QNZT018)

  • A new core-shell structure precursor were prepared by a co-precipitation method. A gradient concentration of Ni-Co-Mn shell layer was co-precipitated on the Ni(OH)2 core which was used as the precursor. Then, the well-ordered spherical LiNi0.92Co0.04Mn0.04O2 was synthesized by sintering the mixture of as-prepared precursor and LiOH·H2O in O2. The prepared samples were characterized by X-ray diffractometry, SEM and galvanostatic charge-discharge test. The results show that, the product has a layered hexagonal α-NaFeO2 structure and a spherical morphology. The line scan test of elements on the cross section area of coating shell show that the main elements of the materials change gradiently. The initial discharge capacity is 193.8 mAh·g-1 at 0.1C rate between 2.8 and 4.3 V and retains 96.8% after 40 cycles at 25 ℃. The capacity at 1C and 2C is 175 mAh·g-1 and 165.1 mAh·g-1. When cycled at 55 ℃, the initial discharge capacity is 236.1 mAh·g-1 and retains 77.5% after 40 cycles, indicating good electrochemical capacity and cycling stability.
  • 加载中
    1. [1]

      [1] Liu W M, Hu G R, Peng Z D, et al. Chin. Chem. Lett., 2011,22:1099-1102

    2. [2]

      [2] Park B C, Kim H B, Bang H J, et al. Chem. Res., 2008,47: 3876-3882

    3. [3]

      [3] Arai H, Tsuda M, Saito K, et al. J. Electrochem. Soc., 2002, 149:A401-A406

    4. [4]

      [4] Ju J H, Ryu K S. J. Alloys Compd., 2011,509:7985-7992

    5. [5]

      [5] Sun Y K, Kim D H, Yoon C S, et al. Adv. Funct. Mater., 2010,20:485-491

    6. [6]

      [6] Ohzuku T, Ueda A, Nagayama M, et al. Electrochim. Acta, 1993,38(9):1159-1167

    7. [7]

      [7] Delmas C, Saadoune I. Solid State Ionics, 1992,53-56(1): 370-375

    8. [8]

      [8] Rougier A, Saadouane I, P Gravereau, et al. Solid State Ionics, 1996,90(1-4):83-90

    9. [9]

      [9] Saadouane I, Delmas C. Mater. Chem., 1996,6(2):193-199

    10. [10]

      [10] Saadouane I, Ménétrier M, Delmas C, et al. Mater. Chem., 1997,7(12):2505-2511

    11. [11]

      [11] Zhecheva E, Stoyanova R. Solid State Ionics, 1993,66(1-2): 143-149

    12. [12]

      [12] Weaving J S, Coowar F, Teagel D A. J. Power Sources., 2001,97(98):733-735

    13. [13]

      [13] Lee D J, Bruno S, Sun Y K, et al. J. Power Sources, 2011, 196:7742-7746

    14. [14]

      [14] SunY K, Myung S T, Park B C, et al. Chem. Mater., 2006, 18:5159-5163

    15. [15]

      [15] Seinoa Y, Ota T, Takada K, et al. J. Power Sources, 2011, 196:64886492

    16. [16]

      [16] Cho Y, Cho J. J. Electrochem. Soc., 2010,157(6):A625- A629

    17. [17]

      [17] SunY K, Myung S T, Kim M H. J. Am. Chem. Soc., 2005,9 (38):13418-13422

    18. [18]

      [18] Sun Y K, Myung S T, Shin H S J, et al. Phys. Chem., 2006, 110:6810-6815

    19. [19]

      [19] SunY K, Myung S T, Park B C, et al. Chem. Mater., 2006, 18:5159-5163

    20. [20]

      [20] SunY K, Myung S T, Park B C, et al. Nature Mater., 2009, 8:320-324

    21. [21]

      [21] Sun Y K, Kima D H, Junga H G, et al. Electrochim. Acta, 2010,55:8621-8627

    22. [22]

      [22] Koenig G M, Belharouak I, Deng H X, et al. Chem. Mater., 2011,23:1954-1963

    23. [23]

      [23] Sun Y K, Noh H J, Yoon C S, et al. J. Electrochem. Soc., 2012,159(1):A1-A5

    24. [24]

      [24] Sun Y K, Lee Bo-Ram, Hyung J Noh, J. Mater. Chem., 2011,21:10108-10112

    25. [25]

      [25] Lee H J, Kim Y J. J. Electrochem. Soc., 2006,153(4):A781- 786

    26. [26]

      [26] Hwang B J, Santhanam R. J. Power Sources, 2003,114:244- 252

    27. [27]

      [27] Delmas C. Electrochim. Acta, 1999,45;243-253

    28. [28]

      [28] Lee M H, Kang Y J, Myung S T, et al. Electrochim. Acta, 2004,50:939-948

    29. [29]

      [29] Ohzuku T, Makimura Y. Chem. Lett., 2001:744-745

    30. [30]

      [30] ZHANG Jun(张军), YANG Qing-He(杨清河), SONG Qing- Mei(宋庆梅), et al. Chin. J. Electrochem.(Dianhuaxue), 2002,8(3):306-314

  • 加载中
    1. [1]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    20. [20]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

Metrics
  • PDF Downloads(0)
  • Abstract views(210)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return