Citation: MAO Yan, ZHANG Chuan-Hui, ZHANG Yang, WANG Qi, XU Gui-Liang, HUANG Ling, LI Jun-Tao, SUN Shi-Gang. Synthesis and Electrochemical Performance of Novel Expanded Graphite Oxide/Sulfur Composite Cathodes for Lithium-Sulfur Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 889-895. doi: 10.3969/j.issn.1001-4861.2013.00.141 shu

Synthesis and Electrochemical Performance of Novel Expanded Graphite Oxide/Sulfur Composite Cathodes for Lithium-Sulfur Batteries

  • Corresponding author: HUANG Ling, 
  • Received Date: 1 December 2012
    Available Online: 6 January 2013

    Fund Project: 国家“973”计划(No.2009CB220102) (No.2009CB220102)国家基础科学人才培养计划(No.J1210014)资助项目。 (No.J1210014)

  • The expanded graphite oxides were prepared by modified Hummers method. The expanded graphite oxide/sulfur (E-GO/S) composites have been successfully prepared by a new chemical reaction method based on comproportionation in the acidic aqueous solution. FT-IR, XPS were characterized the existence of functional groups on the surface of expanded graphite oxide. XRD results showed that the as-prepared sulfur belongs to orthorhombic system. SEM and TEM results indicated the uniform distribution of the sulfur in the composite. The electrochemical test showed that the expanded graphite oxide/sulfur (E-GO/S) composites can deliver the highest discharge capacity of 1 020 mAh·g-1 at the first cycle, after 100 cycles of charge-discharge, the discharge capacity of the composites keep the capacity of ca. 650 mAh·g-1, and have the excellent rate performance and coulombic efficiency that may be attributed to the homogeneous distribution of sulfur in the composites and the chemical approach to fix sulfur and the lithium polysulfides via the chemical bonds with the functional groups on the surface of expanded graphite oxide.
  • 加载中
    1. [1]

      [1] Marmorstein D, Yu T H, Striebel K A, et al. J. Power Sources, 2000,89:219-226

    2. [2]

      [2] Peled E, Gorenshtain A, Segal M, et al. J. Power Sources, 1989,26:269-271

    3. [3]

      [3] Jin B, Kim J, Gu H, J. Power Sources, 2003,117:148-152

    4. [4]

      [4] Liang C, Dudney N. J, Howe N. J, Chem. Mater., 2009,21: 4724-4730

    5. [5]

      [5] Hassoun J, Scrosati B. Angew. Chem. Int. Ed., 2010,49:2371- 2374

    6. [6]

      [6] Cheon S E, Ko K S, Cho J H, et al. J. Electrochem. Soc., 2003,150:A800-A805

    7. [7]

      [7] Zheng G Y, YuanY, Cha J J, et al. Nano Lett., 2011,11:4462 -4467

    8. [8]

      [8] WU Ying-Lei(伍英蕾), YANG Jun(杨军), WANG Jiu-Lin(王 久林), et al. Acta. Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2010,26(2):283-290

    9. [9]

      [9] Zheng W, Liu Y W, Hu X G, et al. Electro. Acta, 2006,51: 1330-1335

    10. [10]

      [10] MA Ping(马萍), ZHANG Bao-Hong(张宝宏), XU Yu-Hong (徐宇虹), et al. Mod. Chem. Ind.(Xiandai Huagong), 2007, 27(3):30-33

    11. [11]

      [11] Wang J, Chen J, Konstantinov K, et al. Electrochim. Acta, 2006,51:4634-4638

    12. [12]

      [12] Liang X, Wen Z Y, Liu Y, et al. Solid State Ionics, 2011, 192:347-350

    13. [13]

      [13] Ji X L, Lee K T, Nazar L F, Nat. Mater., 2009,8:500-506

    14. [14]

      [14] Chen S R, Zhai Y P, Xu G L, et al. Electrochim. Acta, 2011,56:9549-9555

    15. [15]

      [15] Wang J Z, Lu L, Choucairc M, et al. J. Power Sources, 2011,196:7030-7034

    16. [16]

      [16] Aurbach D, Pollak E, Elazari R, et al. J. Electrochem. Soc., 2009,156:A694-A702

    17. [17]

      [17] Liang X, Wen Z Y, Liu Y, et al. J. Power Sources, 2011, 196:9839-9843

    18. [18]

      [18] Ji L W, Rao M, Zheng H M, et al. J. Am. Chem. Soc., 2011, 133:18522-18525

    19. [19]

      [19] Hirata M, Gotou T, Horiuchi S, et al. Carbon, 2004,42:2929 -2937

    20. [20]

      [20] Ji L, Tan Z, Kuykendall T R, et al. Phys. Chem. Chem. Phys., 2011,13:7170-7177

    21. [21]

      [21] Ji F, Li Y L, Feng J M, et al. J. Mater. Chem., 2009,19: 9063-9067

    22. [22]

      [22] Lee K R, Lee K U, Lee J W, et al. Electrochem. Commun., 2010,12:1052-1055

    23. [23]

      [23] Tischer R P. Sulfur Electrode. New York: Academic Press, 1983:220

    24. [24]

      [24] Wagner C D, Riggs W H, Davis L E, et al. A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy, Perkin Elmer Corp., Eden-Prairie, 1979.

    25. [25]

      [25] Pietrzak R, Wachowska H, Fuel Processing Technology, 2006,87:1021-1029

    26. [26]

      [26] Littlejohn D, Chang S G, J. Electron Spectrosc. Related Phenomena, 1995,71:47-50

    27. [27]

      [27] Demir-Cakan R, Morcrette M, Nouar M, et al. J. Am. Chem. Soc., 2011,133:16154-16160

    28. [28]

      [28] Sun M M, Zhang S C, Jiang T, et al. Electrochem. Commun., 2008,10:1819-1822

    29. [29]

      [29] Aurbach D, Gamolsky K, Markovsky B, Electrochim. Acta, 2002,47:1423-1439

    30. [30]

      [30] Wang Y X, Huang L, Sun L C,et al. J. Mater. Chem., 2012, 22:4744-4750

  • 加载中
    1. [1]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    9. [9]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    10. [10]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    14. [14]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    15. [15]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    16. [16]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    17. [17]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    18. [18]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    19. [19]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    20. [20]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

Metrics
  • PDF Downloads(505)
  • Abstract views(756)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return