Citation: MAO Yan, ZHANG Chuan-Hui, ZHANG Yang, WANG Qi, XU Gui-Liang, HUANG Ling, LI Jun-Tao, SUN Shi-Gang. Synthesis and Electrochemical Performance of Novel Expanded Graphite Oxide/Sulfur Composite Cathodes for Lithium-Sulfur Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(5): 889-895. doi: 10.3969/j.issn.1001-4861.2013.00.141 shu

Synthesis and Electrochemical Performance of Novel Expanded Graphite Oxide/Sulfur Composite Cathodes for Lithium-Sulfur Batteries

  • Corresponding author: HUANG Ling, 
  • Received Date: 1 December 2012
    Available Online: 6 January 2013

    Fund Project: 国家“973”计划(No.2009CB220102) (No.2009CB220102)国家基础科学人才培养计划(No.J1210014)资助项目。 (No.J1210014)

  • The expanded graphite oxides were prepared by modified Hummers method. The expanded graphite oxide/sulfur (E-GO/S) composites have been successfully prepared by a new chemical reaction method based on comproportionation in the acidic aqueous solution. FT-IR, XPS were characterized the existence of functional groups on the surface of expanded graphite oxide. XRD results showed that the as-prepared sulfur belongs to orthorhombic system. SEM and TEM results indicated the uniform distribution of the sulfur in the composite. The electrochemical test showed that the expanded graphite oxide/sulfur (E-GO/S) composites can deliver the highest discharge capacity of 1 020 mAh·g-1 at the first cycle, after 100 cycles of charge-discharge, the discharge capacity of the composites keep the capacity of ca. 650 mAh·g-1, and have the excellent rate performance and coulombic efficiency that may be attributed to the homogeneous distribution of sulfur in the composites and the chemical approach to fix sulfur and the lithium polysulfides via the chemical bonds with the functional groups on the surface of expanded graphite oxide.
  • 加载中
    1. [1]

      [1] Marmorstein D, Yu T H, Striebel K A, et al. J. Power Sources, 2000,89:219-226

    2. [2]

      [2] Peled E, Gorenshtain A, Segal M, et al. J. Power Sources, 1989,26:269-271

    3. [3]

      [3] Jin B, Kim J, Gu H, J. Power Sources, 2003,117:148-152

    4. [4]

      [4] Liang C, Dudney N. J, Howe N. J, Chem. Mater., 2009,21: 4724-4730

    5. [5]

      [5] Hassoun J, Scrosati B. Angew. Chem. Int. Ed., 2010,49:2371- 2374

    6. [6]

      [6] Cheon S E, Ko K S, Cho J H, et al. J. Electrochem. Soc., 2003,150:A800-A805

    7. [7]

      [7] Zheng G Y, YuanY, Cha J J, et al. Nano Lett., 2011,11:4462 -4467

    8. [8]

      [8] WU Ying-Lei(伍英蕾), YANG Jun(杨军), WANG Jiu-Lin(王 久林), et al. Acta. Phys.-Chim. Sin.(Wuli Huaxue Xuebao), 2010,26(2):283-290

    9. [9]

      [9] Zheng W, Liu Y W, Hu X G, et al. Electro. Acta, 2006,51: 1330-1335

    10. [10]

      [10] MA Ping(马萍), ZHANG Bao-Hong(张宝宏), XU Yu-Hong (徐宇虹), et al. Mod. Chem. Ind.(Xiandai Huagong), 2007, 27(3):30-33

    11. [11]

      [11] Wang J, Chen J, Konstantinov K, et al. Electrochim. Acta, 2006,51:4634-4638

    12. [12]

      [12] Liang X, Wen Z Y, Liu Y, et al. Solid State Ionics, 2011, 192:347-350

    13. [13]

      [13] Ji X L, Lee K T, Nazar L F, Nat. Mater., 2009,8:500-506

    14. [14]

      [14] Chen S R, Zhai Y P, Xu G L, et al. Electrochim. Acta, 2011,56:9549-9555

    15. [15]

      [15] Wang J Z, Lu L, Choucairc M, et al. J. Power Sources, 2011,196:7030-7034

    16. [16]

      [16] Aurbach D, Pollak E, Elazari R, et al. J. Electrochem. Soc., 2009,156:A694-A702

    17. [17]

      [17] Liang X, Wen Z Y, Liu Y, et al. J. Power Sources, 2011, 196:9839-9843

    18. [18]

      [18] Ji L W, Rao M, Zheng H M, et al. J. Am. Chem. Soc., 2011, 133:18522-18525

    19. [19]

      [19] Hirata M, Gotou T, Horiuchi S, et al. Carbon, 2004,42:2929 -2937

    20. [20]

      [20] Ji L, Tan Z, Kuykendall T R, et al. Phys. Chem. Chem. Phys., 2011,13:7170-7177

    21. [21]

      [21] Ji F, Li Y L, Feng J M, et al. J. Mater. Chem., 2009,19: 9063-9067

    22. [22]

      [22] Lee K R, Lee K U, Lee J W, et al. Electrochem. Commun., 2010,12:1052-1055

    23. [23]

      [23] Tischer R P. Sulfur Electrode. New York: Academic Press, 1983:220

    24. [24]

      [24] Wagner C D, Riggs W H, Davis L E, et al. A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy, Perkin Elmer Corp., Eden-Prairie, 1979.

    25. [25]

      [25] Pietrzak R, Wachowska H, Fuel Processing Technology, 2006,87:1021-1029

    26. [26]

      [26] Littlejohn D, Chang S G, J. Electron Spectrosc. Related Phenomena, 1995,71:47-50

    27. [27]

      [27] Demir-Cakan R, Morcrette M, Nouar M, et al. J. Am. Chem. Soc., 2011,133:16154-16160

    28. [28]

      [28] Sun M M, Zhang S C, Jiang T, et al. Electrochem. Commun., 2008,10:1819-1822

    29. [29]

      [29] Aurbach D, Gamolsky K, Markovsky B, Electrochim. Acta, 2002,47:1423-1439

    30. [30]

      [30] Wang Y X, Huang L, Sun L C,et al. J. Mater. Chem., 2012, 22:4744-4750

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    18. [18]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(505)
  • Abstract views(586)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return