Citation: ZHAO Fu-Zhen, ZENG Peng-Hui, JI Sheng-Fu. Preparation, Characterization and CO Catalytic Oxidation Performance of CuxCe1-xO2-x/SBA-15/Cordierite Monolithic Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(4): 753-759. doi: 10.3969/j.issn.1001-4861.2013.00.122 shu

Preparation, Characterization and CO Catalytic Oxidation Performance of CuxCe1-xO2-x/SBA-15/Cordierite Monolithic Catalysts

  • Received Date: 16 March 2012
    Available Online: 26 April 2012

    Fund Project: 国家自然科学基金(No.20473009)资助项目。 (No.20473009)

  • Cu0.5Ce0.5O1.5/SBA-15/cordierite monolithic catalysts with the Cu0.5Ce0.5O1.5 content from 10% to 60% and 50%CuxCe1-xO2-x/SBA-15/cordierite (x=0~1) monolithic catalysts were prepared using the cordierite as the support and the CuxCe1-xO2-x/SBA-15 as the catalytic component. The catalysts were characterized using Low Temperature Nitrogen Adsorption-Desorption, XRD, XPS and H2-TPR. The catalytic activity of the catalysts for the oxidation of CO was evaluated. The results indicate that the mesoporous structure of SBA-15 is retained in the monolithic catalysts. There are the CuO and CeO2 phases in addition to the cordierite phase. On the surface of the catalyst Cu exists as Cu2+ and Cu+ species and Ce is as Ce4+ species. The redox performance of the monolithic catalysts is related with the Cu0.5Ce0.5O1.5 content and the ratio of the Cu and Ce in the CuxCe1-xO2-x/SBA-15. 50%Cu0.5Ce0.5O1.5/SBA-15/cordierite monolithic catalyst exhibits the best catalytic activity. CO can be completely oxidized at 140℃.
  • 加载中
    1. [1]

      [1] Laguna O H, Centeno M A, Arzamendi G, et al. Catal. Today, 2010,157:155-159

    2. [2]

      [2] Liu J, Zhao Z, Xu C, et al. Rare Earths, 2010,28:198-204

    3. [3]

      [3] Zheng X C, Wang S P, Wang S R, et al. Mater. Sci. Eng., 2005,25:516-520

    4. [4]

      [4] Avgouropoulos G, Ioannides T, Matralis H K, et al. Catal. Lett., 2001,73:33-40

    5. [5]

      [5] Derekaya F B, Kutar C, Guldurb C. Mater. Chem. Phys., 2009,115:496-501

    6. [6]

      [6] Roy S, Heibel A K, Liu W, et al. Chem. Eng. Sci., 2004,59: 957-966

    7. [7]

      [7] ZHAO Fu-Zhen(赵福真), ZENG Peng-Hui(曾鹏晖), ZHANG Guang-Hong(张广宏), et al. Chinese J. Catal.(Cuihua Xuebao), 2010,31:335-342

    8. [8]

      [8] Li L, Xue B, Chen J, et al. Appl. Catal., 2005,292:312-321

    9. [9]

      [9] Zou H, Dong X, Lin W. Appl. Surf. Sci., 2006,253:2893-2898

    10. [10]

      [10] Zheng X, Zhang X, Wang X, et al. Appl. Catal., 2005,295: 142-149

    11. [11]

      [11] Águila G, Gracia F, Cortés J, et al. Appl. Catal., 2008,77: 325-338

    12. [12]

      [12] Avgouropoulos G, Ioannides T, Matralis H. Appl. Catal., 2005,56:87-93

    13. [13]

      [13] Zhu H, Shen M, Kong Y, et al. J. Mol. Catal. A: Chem., 2004,219:155-164

    14. [14]

      [14] Liu W, Flytzani-Stephanopoulos M. J. Catal., 1995,153:317-332

    15. [15]

      [15] Zhu P, Li J, Zuo S, et al. Appl. Surf. Sci. 2008,255:2903-2909

    16. [16]

      [16] Wang S, Zheng X, Wang X, et al. Catal. Lett., 2005,105: 163-168

    17. [17]

      [17] Boaro M, Vicario M, Leitenburg C, et al. Catal. Today, 2003,77:407-417

    18. [18]

      [18] Gomez-Cortes A, Marquez Y, Arenas-Alatorre J, et al. Catal. Today, 2008,133-135:743-749

    19. [19]

      [19] Aguila G, Gracia F, Araya P. Appl. Catal., 2008,343:16-24

    20. [20]

      [20] Marino F, Schonbrod B, Moreno M, et al. Catal. Today, 2008,133-135:735-742

    21. [21]

      [21] Jia A P, Jiang S Y, Lu J Q, et al. J. Phys. Chem. C, 2010, 114:21605-21610

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    17. [17]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(267)
  • Abstract views(461)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return