Citation: XU Li, CHEN Yu, WU Jia-Huan, WEN Ban-Kang. DNA Interaction and Antitumor Activities of Ruthenium(Ⅱ) Polypyridyl Complex[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(3): 613-620. doi: 10.3969/j.issn.1001-4861.2013.00.107 shu

DNA Interaction and Antitumor Activities of Ruthenium(Ⅱ) Polypyridyl Complex

  • Received Date: 22 September 2012
    Available Online: 27 November 2012

    Fund Project: 2012年广东省大学生创新创业训练计划(No.1057312013)资助项目。 (No.1057312013)

  • The interactions of the Ru(Ⅱ) complex, [Ru(phen)2(Hecip)]2+ (phen=1,10-phenanthroline, Hecip=N-ethyl-4-([1,10]-phenanthroline[5,6-f]imidazol-2-yl)carbazole), with calf thymus DNA (CT DNA) were studied by using absorption spectroscopy, binding stoichiometry, viscosity measurement and photoactivated cleavage. A tight 2:1 complex is formed by the Ru(Ⅱ) polypyridyl complex and CT DNA with a binding constant exceeding 105 mol-1·L and with a binding mode of intercalation. Furthermore, the complex exhibits efficient DNA cleavage activity on UV (365 nm) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. On the other hand, the cytotoxic activity of the complex was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) method. The complex shows prominent anticancer activity against selected tumor cell lines with IC50 values lower than those of cisplatin. Further flow cytometry experiments show that the cytotoxic Ru(Ⅱ) complex can cause cell cycle arrest in the S phase.
  • 加载中
    1. [1]

      [1] Greguric I, Aldrich-Wright J R, Collins J G. J. Am. Chem. Soc., 1997,119:3621-3622

    2. [2]

      [2] Nair R B, Teng E S, Kirkland S L, et al. Inorg. Chem., 1998, 37:139-141

    3. [3]

      [3] Erkkila K E, Odom D T, Barton J K. Chem. Rev., 1999,99: 2777-2796

    4. [4]

      [4] Friedman A E, Chambron J C, Sauvage J P, et al. J. Am. Chem. Soc., 2004,126:8630-8631

    5. [5]

      [5] Zeglis B M, Barton J K. J. Am. Chem. Soc., 2006,128:5654-5655

    6. [6]

      [6] Liu Y, Hammitt R, Lutterman D A, et al. Inorg. Chem., 2007, 46:6011-6021

    7. [7]

      [7] Cosgrave L, Devocelle M, Forster R J, et al. Chem. Commun., 2010,46:103-105

    8. [8]

      [8] Tan C P, Wu S H, Lai S S, et al. Dalton Trans., 2011,40: 8611-8621

    9. [9]

      [9] Tan L F, Shen J L, Liu J, et al. Dalton Trans., 2012,41:4575-4587

    10. [10]

      [10] Liu Y J, Li Z Z, Liang Z H, et al. DNA Cell Biol., 2011,30: 839-848

    11. [11]

      [11] Tan C P, Lai S S, Wu S H, et al. J. Med. Chem., 2010,53: 7613-7624

    12. [12]

      [12] Schatzschneider U, Niesel J, Ott I, et al. ChemMedChem, 2008,3:1104-1109

    13. [13]

      [13] Van Dijken A, Bastiaansen J J A M, Kiggen N M M, et al. J. Am. Chem. Soc., 2004,126:7718-7727

    14. [14]

      [14] Grabowski Z R, Rotkiewicz K. Chem. Rev., 2003,103:3899-4032

    15. [15]

      [15] Zhang Y, Wang L, Wada T, et al. Macromol. Chem. Phys., 1996,197:1877-1888

    16. [16]

      [16] Wagner J, Pielichowski J, Hinsch A, et al. Synth. Met., 2004,146:159-165

    17. [17]

      [17] Xin H, Sun M, Wang K Z, et al. Chem. Phys. Lett., 2004, 388:55-57

    18. [18]

      [18] Liu F R, Wang K Z, Bai G Y, et al. Inorg. Chem., 2004,43: 1799-1806

    19. [19]

      [19] Lü Y Y, Gao L H, Han M J, et al. Eur. J. Inorg. Chem., 2006,430:430-436

    20. [20]

      [20] Xu L, Liu P X, Liao G L, et al. Aust. J. Chem., 2010,63:1-9

    21. [21]

      [21] Marmur J A. J. Mol. Biol., 1961,3:208-218

    22. [22]

      [22] Reichmann M E, Rice S A, Thomas C A, et al. J. Am. Chem. Soc., 1954,76:3047-3053

    23. [23]

      [23] Wolf A, Shimer Jr G H, Meehan T. Biochemistry, 1987,26: 6392-6396

    24. [24]

      [24] Chaires J B, Dattagupta N, Crothers D M. Biochemistry, 1982,21:3933-3940

    25. [25]

      [25] Cohen G, Eisenberg H. Biopolymers, 1969,8:45-55

    26. [26]

      [26] Job P. Ann. Chim., 1928,9:113-203

    27. [27]

      [27] Mosmann T. J. Immunol. Methods., 1983,65:55-63

    28. [28]

      [28] Tan L F, Song F C, Zou X Q, et al. DNA Cell Biol., 2011, 30:277-285

    29. [29]

      [29] Pyle A M, Rehmann J P, Meshoyrer R, et al. J. Am. Chem. Soc., 1989,111:3051-3058

    30. [30]

      [30] Han M J, Duan Z M, Wang K Z, et al. J. Phys. Chem. C., 2007,111:16577-16585

    31. [31]

      [31] Friedman A E, Chambron J C, Sauvage J P, et al. J. Am. Chem. Soc., 1990,112:4960-4962

    32. [32]

      [32] Tselepi-Kalouli E, Katsaros N. J. Inorg. Biochem., 1989,37: 271-282

    33. [33]

      [33] Liu J G, Zhang Q L, Shi X F, et al. Inorg. Chem., 2001,40: 5045-5050

    34. [34]

      [34] Satyanarayana S, Dabrowiak J C, Chaires J B. Biochemistry, 1992,31:9319-9324

    35. [35]

      [35] Satyanaryana S, Daborusak J C, Chaires J B. Biochem., 1993,32:2573-2584

    36. [36]

      [36] Cheng C C, Rokita S E, Burrows C J. Angew. Chem. Int. Ed. Engl., 1993,32:277-278

    37. [37]

      [37] Lesko S A, Lorentzen R J, Ts'o P O. Biochemistry, 1980,19: 3023-3028

    38. [38]

      [38] Nilsson R, Merkel P B, Kearns D R. Photochem. Photobiol., 1972,16:117-124

    39. [39]

      [39] Patra A K, Nethaji M, Chakravarty A R. J. Inorg. Biochem., 2007,101:233-244

    40. [40]

      [40] Deshpande M S, Kumbhar A A, Kumbhar A S, et al. Bioconjugate Chem., 2009,20:447-459

    41. [41]

      [41] Gao F, Chao H, Ji L N. Chem. Biodivers., 2008,5:1962-1979

    42. [42]

      [42] Yu H J, Chen Y, Yu L, et al. Eur. J. Med. Chem., 2012,55: 146-154

    43. [43]

      [43] Karna P, Sharp S M, Yates C, et al. Mol. Cancer., 2009,8: 93

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    10. [10]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    11. [11]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    12. [12]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    13. [13]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    14. [14]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    15. [15]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    16. [16]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    17. [17]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    18. [18]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    19. [19]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(0)
  • Abstract views(280)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return