Citation: LUO Fei, ZHOU De-Feng, YANG Guo-Cheng, LIU Jian-Wei, LI Zhao-Hui, MENG Jian. Electrospinning Preparation and Visible-Light Photocatalytic Activity of V2O5 Micro-Nanorod[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(3): 500-506. doi: 10.3969/j.issn.1001-4861.2013.00.104 shu

Electrospinning Preparation and Visible-Light Photocatalytic Activity of V2O5 Micro-Nanorod

  • Received Date: 28 July 2012
    Available Online: 18 October 2012

    Fund Project: 国家自然科学基金(No.20871023) (No.20871023)吉林省科技发展计划项目(No.20101549) (No.20101549)吉林省教育厅(No.2013130)资助项目。 (No.2013130)

  • V2O5 micro-nanorods were fabricated via calcining the as-synthesized precursors prepared by electrospinning technique route using NH4VO3 and PVP as regent. The physicochemical properties of the catalysts were characterized by Thermogravimetric and Differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-Vis diffuse reflectance spectra(UV-Vis). The photocatalytic activity of V2O5 micro-nanorod toward the decomposition of Methylene Blue (MB) was investigated. The results indicated that calcination temperature had a great influence on the morphologies and crystalline phases of the micro-nanorod. 550 ℃ micro-nanorod exhibited the highest activity for degrading MB under Visible light, and the photocatalytic mechanism of V2O5 micro-nanorod was also presented.
  • 加载中
    1. [1]

      [1] Wu S, Wang C, Cui Y, et al. Mater. Lett., 2010,64:115-118

    2. [2]

      [2] Zhang K L, Liu C M, Huang F Q, et al. Appl. Catal. B: Environ., 2006,68:125-129

    3. [3]

      [3] Zhang X, Ai Z, Jia F, et al. Phys. Chem. C, 2008,112:747-753

    4. [4]

      [4] An H, Du Y, Wang T, et al. Rare Metals, 2008,27:243-250

    5. [5]

      [5] Yu J G, Dai G P, Huang B. Phys. Chem. C, 2009,113: 16394-16401

    6. [6]

      [6] Ozaki H, Iwanuto S, Inuue M. Catal. Lett., 2007,113:95-98

    7. [7]

      [7] Shinya H, Wataru T, Yoshinori N, et al. Appl. Catal. A: General, 2008,340:98-104

    8. [8]

      [8] Ding B, Wang M R, Wang X F, et al. Mater. Today, 2010,13 (11):16-27

    9. [9]

      [9] Chan C K, Peng H L, Twesten R D, et al. Nano Lett., 2007, 490-495

    10. [10]

      [10] Xu S, Qin Y, Xu C, et al. Nanotechnol., 2010,5:366-373

    11. [11]

      [11] Liu J, Xia H, Xue D, et al. J. Am. Chem. Soc., 2009,131: 12086-12087

    12. [12]

      [12] Briseno A L, Holcombe T W, Boukai A I, et al. Nano Lett., 2010,10:334-340

    13. [13]

      [13] Zhai T, Liu H, Li H, et al. Adv. Mater., 2010,22:2547-2552

    14. [14]

      [14] Liu Z L, Fang G J, Wang Y Q, et al. Phys. D: Appl. Phys., 2000,33:2327-2332

    15. [15]

      [15] Tien L C, Chen Y J. Appl. Surface Sci., 2012,258:3584-3588

    16. [16]

      [16] Akbarzadeh R, Umbarkar S B, Sonawane R S, et al. Appl. Catal. A, 2010,374:103-109

    17. [17]

      [17] Wang Y, Zhang J W, Liu L X, et al. Mater. Lett., 2012,75: 95-98

    18. [18]

      [18] Fei H L, Zhou H J, Wang J G, et al. Solid State Sci., 2008,10:1276-1284

    19. [19]

      [19] Yan M Y, Shen Y, Zhao L, et al. Mater. Res. Bull., 2011, 46:1648-1653

    20. [20]

      [20] Tripathi A M, Ranjith G N, Samdarshi S K. Solar Energy Mater. Solar Cells, 2010,94:2379-2385

    21. [21]

      [21] Rainer O, Dan Y Y, Jesse T. et al. Nano Lett., 2006,6(6): 1297-1302

    22. [22]

      [22] Panda P K, Ramakrishna S. J. Mater. Sci., 2007,42(6):2189-2193

    23. [23]

      [23] Teo W E, Ramakrishna S. Nanotechnology, 2006,17(14): R89-R106

    24. [24]

      [24] Kim G, Kim W. Appl. Phys. Lett., 2006,88(23):233101

    25. [25]

      [25] Periasamy V, Narayan B, Hak Y K, et al. Scipta Materialia, 2003,49:577-581

    26. [26]

      [26] Muzafar A K, Nasser A M B, Faheem A S, et al. Mater. Sci., 2010,45:1272-1279

    27. [27]

      [27] Su C Y, Shao C L, Liu Y C. J. Colloid. Interface Sci, 2011, 359:220-227

    28. [28]

      [28] Wang Z L, Liu X J, Lü M F, et al. J. Phys. Chem. C, 2008, 112:15171-15175

    29. [29]

      [29] Zhang Z J, Wang W Z, Shang M, et al. Hazardous Mater., 2010,177:1013-1018

    30. [30]

      [30] Xu X W, Ni Q Y. Catal. Commun., 2010,11:359-363

    31. [31]

      [31] Liu H B, Wu Y M, Zhang J L. Appl. Mater. Interfaces, 2011,3:1757-1764

  • 加载中
    1. [1]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    6. [6]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    11. [11]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(493)
  • Abstract views(532)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return