Citation: LIN Xue, GUAN Qing-Feng, ZOU Chun-Jie, LIU Ting-Ting, ZHANG Yao, LIU Chun-Bo, ZHAI Hong-Ju. Hydrothermal Synthesis and Visible Light Photocatalytic Property of Bi3.25Sm0.75Ti3O12 Nanowires[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(3): 605-612. doi: 10.3969/j.issn.1001-4861.2013.00.102 shu

Hydrothermal Synthesis and Visible Light Photocatalytic Property of Bi3.25Sm0.75Ti3O12 Nanowires

  • Received Date: 7 October 2012
    Available Online: 2 November 2012

    Fund Project:

  • Bi3.25Sm0.75Ti3O12 (BSmT) nanowires of 40 nm in diameter were synthesized through a one-step hydrothermal process. The BSmT nanowires are of layered perovskites. The results of UV-Visible diffuse reflectance spectra (DRS) demonstrate that the band gap of BSmT nanowires is about 2.67 eV. The BSmT nanowires exhibit higher photocatalytic activity than that of the traditional N doped TiO2 (N-TiO2) and pure bismuth titanate (Bi4Ti3O12, BIT). 92.0% methyl orange (MO) (0.01 mmol·L-1) is decolorized after visible light irradiation for 360 min. The high photocatalytic performance of BSmT photocatalyst could be attributed to the strong visible light absorption and the recombination restraint of the e-/h+ pairs resulting from doping of Sm3+ ions. In addition, after 4 recycles, there is no significant decrease in the photocatalytic activity, indicating that BSmT is a stable photocatalyst for degradation of MO under visible light irradiation.
  • 加载中
    1. [1]

      [1] Wang S L, Li P G, Zhu H W, et al. Powder Technol., 2012, 230:48-53

    2. [2]

      [2] YU Chang-Lin(余长林), ZHOU Wan-Qin(周晚琴), YU Jimmy C. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2011,27 (10):2033-2038

    3. [3]

      [3] LI Yue-Jun(李跃军), CAO Tie-Ping(曹铁平), WANG Chang-Hua(王长华), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2011,27(10):1975-1980

    4. [4]

      [4] YAN Ya(严亚), LV Ying(吕瑛), XIA Yi(夏怡), et al. Chinese J. Inorg. Chem. (Wuji Huaxue Xuebao), 2011,27(10):1999-2004.

    5. [5]

      [5] Ghaffari M, Huang H, Tan P Y, et al. Powder Technol., 2012, 225:221-226

    6. [6]

      [6] Uyguner-Demirel C S, Bekbolet M. Chemosphere, 2011,84: 1009-1031

    7. [7]

      [7] Xu J J, Chen M D, Fu D G. Appl. Surf. Sci., 2011,257:7381-7386

    8. [8]

      [8] Xu J, Wang W Z, Shang M, et al. J. Hazard Mater., 2011,196: 426-430

    9. [9]

      [9] Yao W F, Wang H, Xu X H, et al. Appl. Catal. A: Gen., 2004, 259:29-33

    10. [10]

      [10] Yu J Q, Zhang Y, Kudo A. J. Solid State Chem., 2009,182: 223-228

    11. [11]

      [11] Li J Q, Wang D F, Liu H, et al. Phys. Status Solidi A, 2012, 209:248-253

    12. [12]

      [12] Zhang L W, Wang Y J, Cheng H Y, et al. Adv. Mater., 2009, 21:1286-1290

    13. [13]

      [13] Zhang L S, Wang H L, Chen Z G, et al. Appl. Catal. B: Environ., 2011,106:1-13

    14. [14]

      [14] Zhang L, Cao X F, Chen X T, et al. J. Colloid Interf. Sci., 2011,354:630-636

    15. [15]

      [15] Luan J F, Hao X P, Zheng S R, et al. J. Mater. Sci., 2006,41: 8001-8012

    16. [16]

      [16] Yao W F, Xu X H, Wang H, et al. Appl. Catal. B: Environ., 2004,52:109-116

    17. [17]

      [17] Yao W F, Wang H, Xu X H, et al. Mater. Lett., 2003,57:1899-1902

    18. [18]

      [18] Buscaglia M T, Sennour M, Buscaglia V, et al. Cryst. Growth Des., 2011,11:1394-1401

    19. [19]

      [19] Chen X H, J Q Hu, Chen Z W, et al. Biosens. Bioelectron., 2009,24:3448-3454

    20. [20]

      [20] Chen Z W, He X H. J. Alloys Compd., 2010,497:312-315

    21. [21]

      [21] Patwardhan J S, Rahaman M N. J. Mater. Sci., 2004,39:133-139

    22. [22]

      [22] Kudo A, Hijii S. Chem. Lett., 1999,28:1103-1104

    23. [23]

      [23] Lin X, Lv P, Guan Q F, et al. Appl. Surf. Sci., 2012,258: 7146-7153

    24. [24]

      [24] Ghorai T K, Biswas S K, Pramanik P. Appl. Surf. Sci., 2008, 254:7498-7504

    25. [25]

      [25] Castro A L, Nunes M R, Carvalho M D, et al. J. Solid State Chem., 2009,182:1838-1845

    26. [26]

      [26] Tang X D, Ye H Q, Zhao Z, et al. Catal. Lett., 2009,133:362-369

    27. [27]

      [27] Yao W F, Wang H, Shang S X, et al. J. Mol. Catal. A: Chem., 2003,198:343-348

    28. [28]

      [28] Wang Z Z, Qi Y J, Qi H Y, et al. J. Mater. Sci.: Mater. Electron., 2010,21:523-528

    29. [29]

      [29] LIN Xue(林雪), GUAN Qing-Feng (关庆丰), LI Hai-Bo (李海波), et al. Acta Phys.-Chim. Sin. (Wuli Huaxue Xuebao), 2012,28:1481-1488

    30. [30]

      [30] LIN Xue(林雪), LV Peng(吕鹏), GUAN Qing-Feng (关庆丰), et al. Acta Phys.-Chim. Sin. (Wuli Huaxue Xuebao), 2012,28: 1978-1984

    31. [31]

      [31] Pinheiro A G, Pereira F M M, Santos M R P, et al. J. Mater. Sci., 2007,42:2112-2120

    32. [32]

      [32] Yang J H, Zheng J H, Zhai H J, et al. J. Alloys Compd., 2009,481:628-631

    33. [33]

      [33] Tauc J. Amorphous and Liquid Semiconductors. New York: Plenum Press, 1974:159

    34. [34]

      [34] Goto T, Noguchi Y, Soga M, et al. Mater. Res. Bull., 2005,40: 1044-1051

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    6. [6]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    9. [9]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    10. [10]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

Metrics
  • PDF Downloads(0)
  • Abstract views(232)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return