Citation: GUAN Fang, ZHANG Hui-Min, ZHAO Li-Jun, CHANG Ai-Min, ZHAO Peng-Jun, ZHANG Bo. Effect of Ti-Doped in (LaMn1-xTixO3)0.67(NiMn2O4)0.33 Ceramics on Microstructure and Electrical Properties[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(4): 760-766. doi: 10.3969/j.issn.1001-4861.2013.00.086 shu

Effect of Ti-Doped in (LaMn1-xTixO3)0.67(NiMn2O4)0.33 Ceramics on Microstructure and Electrical Properties

  • Received Date: 17 September 2012
    Available Online: 14 November 2012

    Fund Project: 国家自然科学基金(No.50902148) (No.50902148)中科院“西部之光”(No.RCPY200901) (No.RCPY200901)新疆维吾尔自治区科技计划(No.201116147)资助项目。 (No.201116147)

  • A series of NTC (Negative temperature coefficient) composite material of (LaMn1-xTixO3)0.67(NiMn2O4)0.33 was prepared by solid-state method. The calcined temperature, particle size, ceramics phase structure, morphology, R-T property and electrical stability were characterized by TG/DSC, Laser particle size analyzer, XRD, SEM, resistance-temperature measurement and aging test, respectively. The results show that in the range of 1 200~1 300℃ sintered temperature, the electrical resistivity ρ25℃ of the composite ceramics increased significantly with Ti content increased. The ρ25℃ are found to be in the range of 4.4~53 179 Ω·cm and the B25/50 values are 1 357~3 998 K. The resistance drift rate ΔR/R0 of the composite ceramics after 1 000 h aging test at 125℃ was less than 0.51%. The electrical resistivity and B value of (LaMn1-xTixO3)0.67(NiMn2O4)0.33 could be adjusted to desired values. The composite system has high stability. Therefore, the (LaMn1-xTixO3)0.67(NiMn2O4)0.33 could be used for NTC thermistor as advanced semi-conducting materials.
  • 加载中
    1. [1]

      [1] Feteira A. J. Am. Ceram. Soc., 2009,92(5):967-983

    2. [2]

      [2] Fang D L, Wang Z B, Yang P H, et al. J. Am. Ceram. Soc., 2006,89(1):230-235

    3. [3]

      [3] Feteira A. Adv. Sci. Technol., 2010,67:124-133

    4. [4]

      [4] LI Yan-Rong(李言荣), YUN Zheng-Zhong(恽正中). Introduc- tion to Electronic Materials(电子材料导论). Beijing: Tsinghua University Press, 2001:384-388

    5. [5]

      [5] WANG Wei-Min (王为民), GAO Feng(高峰), ZHAO Ming (赵鸣), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2006,22(3):515-518

    6. [6]

      [6] PENG Chang-Wen(彭昌文), ZHANG Hui-Min(张惠敏), CHANG Ai-Min(常爱民), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2011,26(10):1037-1042

    7. [7]

      [7] Wang Z B, Zhao C H, Chen C S, et al. J. Eur. Ceram. Soc., 2006,26(13):2833-2837

    8. [8]

      [8] ZHANG Hui-Min(张惠敏), CHANG Ai-Min(常爱民), WANG Wei(王伟), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(5):781-786

    9. [9]

      [9] JIN Xian-Jing(靳先静), CHANG Ai-Min(常爱民), ZHANG Hui-Min(张惠敏), et al. J. Inorg. Mater.(Wuji Cailiao Xuebao), 2009,24(5):1013-1018

    10. [10]

      [10] Park K, Lee J K, Kim S J, et al. J. Alloy. Compd., 2009,467 (1-2):310-316

    11. [11]

      [11] Jadhav R N, Puri V. J. Alloy. Compd., 2010,507(1):151-156

    12. [12]

      [12] Zhang H, Chang A, Peng C. Microelectron. Eng., 2011,88 (9):2934-2940

    13. [13]

      [13] Park K, Lee J K. Scripta Mater., 2007,57(4):329-332

    14. [14]

      [14] Zhao C H, Wang Z B, Wang S M, et al. J. Electroceram., 2008,20(2):113-117

    15. [15]

      [15] Luo W, Yao H M, Yang P H, et al. J. Am. Ceram. Soc., 2009,92(11):2682-2686

    16. [16]

      [16] Singla M L, Awasthi S, Srivastava A, et al. Sens. Actuators A, 2007,136(2):604-612

    17. [17]

      [17] Todorova Z, Dishovsky N, Dimitrov R, et al. Polym. Compos., 2008,29(1):109-118

    18. [18]

      [18] Maurin I, Barboux P, Lassailly Y, et al. J. Solid State Chem., 2001,160(1):123-133

    19. [19]

      [19] Shannon R D. Acta Cryst. A, 1976,32(5):751-767

    20. [20]

      [20] Csete de Gyorgyfalva GDC, Reaney I M. J. Eur. Ceram. Soc., 2001,21(10):2145-2148

    21. [21]

      [21] Park K, Kim S J, Kim J G, et al. J. Eur. Ceram. Soc., 2007, 27(4):2009-2016

    22. [22]

      [22] YUAN Xiao-Bo(原晓波), LIU Yi-Hua(刘宜华), HUANG Bao-Xin(黄宝歆), et al. J. Funct. Mater. Dev.(Gongneng Cailiao Yu Qijian Xuebao), 2004,1010(2):196-197

  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    15. [15]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(217)
  • Abstract views(620)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return