Citation: LUAN Dan, SUN Ping, LIU Gui-Xia, WANG Jin-Xian, DONG Xiang-Ting, YU Wen-Sheng. Preparation and Properties of Ag@YF3:Eu3+ Core-Shell Structural Nanomaterials[J]. Chinese Journal of Inorganic Chemistry, ;2013, 29(3): 474-478. doi: 10.3969/j.issn.1001-4861.2013.00.085 shu

Preparation and Properties of Ag@YF3:Eu3+ Core-Shell Structural Nanomaterials

  • Received Date: 10 September 2012
    Available Online: 26 October 2012

    Fund Project: 国家自然科学基金(No.51072026,50972020)资助项目。 (No.51072026,50972020)

  • Ag nanoparticles were successfully synthesized with a high yield by a polyol process, and the uniform spherical Ag@YF3:Eu3+ core-shell structural nanomaterials were fabricated via a facile direct precipitation method, then the structure and properties were characterized. XRD patterns show that the orthogonal phase YF3:Eu3+ nanocrystals are coated on the surface of Ag cores. TEM images indicate that the obtained composites have obvious core-shell structure and uniform spherical morphology, the diameter of the Ag core is of 80~100 nm, the size of the Ag@YF3:Eu3+ composite is about 150~180 nm, the surface is rough and the coating is complete. Electron diffraction pattern indicates that the samples are polycrystalline. The photoluminescence spectra indicate that the core-shell structural composites have good luminescence, the strong emission peak is near 593 nm corresponding to 5D07F1 magnetic dipole transition of Eu3+, the fluorescent intensity is weaker but the lifetime is stronger than that of the pure YF3:Eu3+, which indicates that the fluorescent of YF3:Eu3+ is quenched by Ag cores.
  • 加载中
    1. [1]

      [1] Wang F, Liu X G. Chem. Soc. Rev., 2009,38:976-989

    2. [2]

      [2] Wiley B J, Chen Y, McLellan J M, et al. Nano Lett. 2007,7 (4):1032-1036

    3. [3]

      [3] Zhang Q, Li W Y, Moran C, et al. J. Am. Chem. Soc., 2010, 132:11372-11378

    4. [4]

      [4] Lee Y W, Kim M, Kim Z H, et al. J. Am. Chem. Soc., 2009, 131:17036-17037

    5. [5]

      [5] Jain P K, El-Sayed I H. Nanotoday, 2007,2(1):18-29

    6. [6]

      [6] Xiong L Q, Chen Z G, Yu M X, et al. Biomaterials, 2009,30: 5592-5596

    7. [7]

      [7] Yang P P, Quan Z W, Hou Z Y, et al. Biomaterials, 2009, 30:4786-4795

    8. [8]

      [8] Wang L Y, Yang Z H, Zhang Y, et al. J. Phys. Chem. C., 2009, 113:3955-3959

    9. [9]

      [9] Qin W P, Zhang D S, Zhao D, et al. Chem. Commun., 2010, 46:2304-2306

    10. [10]

      [10] Liu C H, Wang H, Li X, et al. J. Mater. Chem., 2009,19: 3546-3553

    11. [11]

      [11] Tan S Y, Yang P P, Niu N, et al. J. Alloys Compd., 2010, 490:684-689

    12. [12]

      [12] Liu G X , Li X, Dong X T, et al. J. Nanopart. Res., 2011, 13:4025-4034

    13. [13]

      [13] LI Xia(李霞), LIU Gui-Xia(刘桂霞), DONG Xiang-Ting (董相廷), et al. Chem. J. Chinese Universities(Gaodeng Xuexiao Huaxue Xuebao), 2011,1(1):23-27

    14. [14]

      [14] LIU Gui-Xia(刘桂霞), ZHANG Song(张颂), DONG Xiang-Ting(董相廷), et al. Acta Chim. Sin. (Huaxue Xuebao), 2010,68(13):1298-1302

    15. [15]

      [15] Wang X, Zhang J, Peng Q, et al. Inorg. Chem., 2006,45(17): 6661-6665

    16. [16]

      [16] Li C X, Yang J, Yang P P, et al. Chem. Mater., 2008,20 (13):4317-4326

    17. [17]

      [17] Gai S L, Yang P P, Li C X, et al. Adv. Funct. Mater., 2010, 20:1166-1172

    18. [18]

      [18] Ma Z Y, Dosev D, Nichkova M, et al. J. Mater. Chem., 2009, 19:4695-4700

    19. [19]

      [19] Min Y L, Wan Y, Yu S H. Solid State Sciences, 2009,11 (1):96-101

    20. [20]

      [20] Gu J Q, Sun L D, Yan Z G, et al. Chemistry-An Asian J., 2008, 3(10):1857-1864

    21. [21]

      [21] Feng W, Sun L D, Yan C H. Chem. Commun., 2009:4393-4395

    22. [22]

      [22] Liu N, Qin W P, Qin G S, et al. Chem. Commun., 2011,47 (27):7671-7673

    23. [23]

      [23] Zhang F, Braun G B, Shi Y F, et al. J. Am. Chem. Soc., 2010,132(9):2850-2851

    24. [24]

      [24] Willets K A, Van Duyne R P. Annu. Rev. Phys. Chem., 2007,58:267-297

    25. [25]

      [25] Su K H, Wei Q H, Zhang X, et al. Nano Lett., 2003,3(8): 1087-1090

    26. [26]

      [26] Schneider G, Decher G. Nano Lett., 2006,6(3):530-536

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    5. [5]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    9. [9]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    17. [17]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(243)
  • Abstract views(488)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return