Citation: Jiaxin Su,  Jiaqi Zhang,  Shuming Chai,  Yankun Wang,  Sibo Wang,  Yuanxing Fang. Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240801. doi: 10.3866/PKU.WHXB202408012 shu

Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction

  • Corresponding author: Sibo Wang,  Yuanxing Fang, 
  • Received Date: 20 August 2024
    Revised Date: 19 September 2024
    Accepted Date: 19 September 2024

    Fund Project: This work acknowledges support from the National Key R&D Program of China (2022YFE0114800, 2021YFA1502100), National Natural Science Foundation of China (22075047, 22032002, U1905214, 21961142019) and the 111 Project (D16008).

  • Polymer-based photoanodes for the water oxidation reaction have recently garnered attention, with carbon nitride standing out due to its numerous advantages. This study focuses on synthesizing crystalline carbon nitride photoanodes, specifically poly(heptazine imide) (PHI), and explores the role of salts in their production. Using a binary molten salt system, optimal photocurrent density of 365 μA·cm-2 was achieved with a voltage bias of 1.23 V versus the reversible hydrogen electrode under AM 1.5G illumination, this performance is ca. 18 times to the pristine PCN photoanode. In this process, NH₄SCN facilitates the growth of SnS2 seeding layers, while K2CO3 enhances film crystallinity. In situ electrochemical analyses show that this salt combination improves photoexcited charge transfer efficiency and minimizes resistance in the SnS2 layer. This study clarifies the role of salts in synthesizing the PHI photoanode and provides insights for designing high-crystallinity carbon nitride-based functional films.
  • 加载中
    1. [1]

      (1) Fang, Y.; Hou, Y.; Fu, X.; Wang, X. Chem. Rev. 2022, 122, 4204. doi:10.1021/acs.chemrev.1c00686

    2. [2]

    3. [3]

    4. [4]

    5. [5]

      (5) Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J.; Wang, L. J. Mater. Sci. Techol. 2022, 124, 193. doi:10.1016/j.jmst.2022.01.029

    6. [6]

      (6) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi:10.1002/anie.202218688

    7. [7]

      (7) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi:10.1038/nmat2317

    8. [8]

    9. [9]

      (9) Zheng, D.; Yang, L.; Chen, W.; Fang, Y.; Wang, X. ChemSusChem. 2021, 14, 3821. doi:10.1002/cssc.202101346

    10. [10]

      (10) Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G. I. N.; Wu, L.; Tung, C.; Zhang, T. Adv. Mater. 2016, 28, 9454. doi:10.1002/adma.201602581

    11. [11]

      (11) Bornoz, P.; Prévot, M. S.; Yu, X.; Guijarro, N.; Sivula, K. J. Am. Chem. Soc. 2015, 137, 15338. doi:10.1021/jacs.5b05724

    12. [12]

      (12) Sprick, R. S.; Chen, Z.; Cowan, A. J.; Bai, Y.; Aitchison, C. M.; Fang, Y.; Zwijnenburg, M. A.; Cooper, A. I.; Wang, X. Angew. Chem. Int. Ed. 2020, 59, 18695. doi:10.1002/anie.202008000

    13. [13]

      (13) Lan, Z.; Fang, Y.; Zhang, Y.; Wang, X. Angew. Chem. Int. Ed. 2018, 57, 470. doi:10.1002/anie.201711155

    14. [14]

      (14) Chai, S.; Zhao, S.; Su, J.; Zhang, J.; Chen, X.; Sprick, R. S.; Fang, Y. Chem. Sci. 2024, doi:10.1039/D4SC03512G

    15. [15]

      (15) Chai, S.; Chen, X.; Zhang, X.; Fang, Y.; Sprick, R. S.; Chen, X. Environ. Sci.: Nano 2022, 9, 2464. doi:10.1039/D2EN00135G

    16. [16]

      (16) Li, G.; Fu, P.; Yue, Q.; Ma, F.; Zhao, X.; Dong, S.; Han, X.; Zhou, Y.; Wang, J. Chem Catal. 2022, 2, 1734. doi:10.1016/j.checat.2022.05.002

    17. [17]

      (17) Zheng, Y.; Chen, Y.; Gao, B.; Lin, B.; Wang, X. Adv. Funct. Mater. 2020, 30, 2002021. doi:10.1002/adfm.202002021

    18. [18]

      (18) Wang, L.; Wan, Y.; Ding, Y.; Wu, S.; Zhang, Y.; Zhang, X.; Zhang, G.; Xiong, Y.; Wu, X.; Yang, J.; et al. Adv. Mater. 2017, 29, 1702428. doi:10.1002/adma.201702428

    19. [19]

    20. [20]

      (20) Adler, C.; Selim, S.; Krivtsov, I.; Li, C.; Mitoraj, D.; Dietzek, B.; Durrant, J. R.; Beranek, R. Adv. Funct. Mater. 2021, 31, 2105369. doi:10.1002/adfm.202105369

    21. [21]

      (21) Fang, Y.; Li, X.; Wang, X. ACS Catal. 2018, 8, 8774. doi:10.1021/acscatal.8b02549

    22. [22]

      (22) Li, X.; Wang, J.; Xia, J.; Fang, Y.; Hou, Y.; Fu, X.; Shalom, M.; Wang, X. ChemSusChem 2022, 15, e202200330. doi:10.1002/cssc.202200330

    23. [23]

      (23) Lan, Z.; Zhang, G.; Wang, X. Appl. Catal. B 2016, 192, 116. doi:10.1016/j.apcatb.2016.03.062

    24. [24]

      (24) Li, X.; Wang, J.; Fang, Y.; Zhang, H.; Fu, X.; Wang, X. Acc. Mater. Res. 2021, 2, 933. doi:10.1021/accountsmr.1c00148

    25. [25]

      (25) Jiang, Y.; Cao, C.; Tan, Y.; Chen, Q.; Zeng, L.; Yang, W.; Sun, Z.; Huang, L. J. Mater. Sci. Techol. 2023, 141, 32. doi:10.1016/j.jmst.2022.09.024

    26. [26]

      (26) Peng, G.; Xing, L.; Barrio, J.; Volokh, M.; Shalom, M. Angew. Chem. Int. Ed. 2018, 57, 1186. doi:10.1002/anie.201711669

    27. [27]

      (27) Luo, M.; Jiang, G.; Yu, M.; Yan, Y.; Qin, Z.; Li, Y.; Zhang, Q. J. Mater. Sci. Techol. 2023, 161, 220. doi:10.1016/j.jmst.2023.03.038

    28. [28]

      (28) Adler, C.; Krivtsov, I.; Mitoraj, D.; dos Santos-Gómez, L.; García-Granda, S.; Neumann, C.; Kund, J.; Kranz, C.; Mizaikoff, B.; Turchanin, A.; et al. ChemSusChem 2021, 14, 2170. doi:10.1002/cssc.202100313

    29. [29]

      (29) Li, X.; Chen, X.; Fang, Y.; Lin, W.; Hou, Y.; Anpo, M.; Fu, X.; Wang, X. Chem. Sci. 2022, 13, 7541. doi:10.1039/D2SC02043B

    30. [30]

      (30) Zhu, J.; Zhang, G.; Xu, Y.; Huang, W.; He, C.; Zhang, P.; Mi, H. Inorg. Chem. Front. 2022, 9, 4320. doi:10.1039/D2QI00715K

    31. [31]

      (31) Burmeister, D.; Müller, J.; Plaickner, J.; Kochovski, Z.; List-Kratochvil, E. J. W.; Bojdys, M. J. Chem. Eur. J. 2022, 28, e202200705. doi:10.1002/chem.202200705

    32. [32]

      (32) Resasco, J.; Zhang, H.; Kornienko, N.; Becknell, N.; Lee, H.; Guo, J.; Briseno, A. L.; Yang, P. ACS Central Sci. 2016, 2, 80. doi:10.1021/acscentsci.5b00402

    33. [33]

      (33) Bera, S.; Lee, S. A.; Lee, W.-J.; Kim, J.-H.; Kim, C.; Kim, H. G.; Khan, H.; Jana, S.; Jang, H. W.; Kwon, S.-H. ACS Appl. Mater. Interfaces 2021, 13, 14291. doi:10.1021/acsami.1c00958

    34. [34]

      (34) Markushyna, Y.; Teutloff, C.; Kurpil, B.; Cruz, D.; Lauermann, I.; Zhao, Y.; Antonietti, M.; Savateev, A. Appl. Catal. B. 2019, 248, 211. doi:10.1016/j.apcatb.2019.02.016

    35. [35]

      (35) Karjule, N.; Barrio, J.; Xing, L.; Volokh, M.; Shalom, M. Nano Lett. 2020, 20, 4618. doi:10.1021/acs.nanolett.0c01484

    36. [36]

      (36) Chang, M.; Pan, Z.; Zheng, D.; Wang, S.; Zhang, G.; Anpo, M.; Wang, X. ChemSusChem 2023, 16, e202202255. doi:10.1002/cssc.202202255

    37. [37]

      (37) Zhou, M.; Zeng, L.; Li, R.; Yang, C.; Qin, X.; Ho, W.; Wang, X. Appl. Catal. B. 2022, 317, 121719. doi:10.1016/j.apcatb.2022.121719

    38. [38]

      (38) Pan, Z.; Zhao, M.; Zhuzhang, H.; Zhang, G.; Anpo, M.; Wang, X. ACS Catal. 2021, 11, 13463. doi:10.1021/acscatal.1c03687

    39. [39]

      (39) Zhang, G.; Li, G.; Lan, Z.; Lin, L.; Savateev, A.; Heil, T.; Zafeiratos, S.; Wang, X.; Antonietti, M. Angew. Chem. Int. Ed. 2017, 56, 13445. doi:10.1002/anie.201706870

    40. [40]

      (40) Guo, F.; Hu, B.; Yang, C.; Zhang, J.; Hou, Y.; Wang, X. Adv. Mater. 2021, 33, 2101466. doi:10.1002/adma.202101466

    41. [41]

      (41) Zhang, J.; Liang, X.; Zhang, C.; Lin, L.; Xing, W.; Yu, Z.; Zhang, G.; Wang, X. Angew. Chem. Int. Ed. 2022, 61, e202210849. doi:10.1002/anie.202210849

    42. [42]

      (42) Wu, K.; Li, X.; Wang, W.; Huang, Y.; Jiang, Q.; Li, W.; Chen, Y.; Yang, Y.; Li, C. ACS Catal. 2022, 12, 8. doi:10.1021/acscatal.1c03669

    43. [43]

      (43) Tashakory, A.; Mondal, S.; Battula, V. R.; Mark, G.; Shmila, T.; Volokh, M.; Shalom, M. Small Struct. 2024, n/a, 2400123. doi:10.1002/sstr.202400123

    44. [44]

      (44) Tan, H.; Gu, X.; Kong, P.; Lian, Z.; Li, B.; Zheng, Z. Appl. Catal., B. 2019, 242, 67. doi:10.1016/j.apcatb.2018.09.084

    45. [45]

      (45) Li, K.; Jiang, Y.; Li, Y.; Wang, Z.; Liu, X.; Wang, P.; Xia, D.; Fan, R.; Lin, K.; Yang, Y. Int. J. Hydrog. Energy 2020, 45, 9683. doi:10.1016/j.ijhydene.2020.01.200

    46. [46]

      (46) Aragó, J.; Viruela, P. M.; Ortí, E.; Malavé Osuna, R.; Hernández, V.; López Navarrete, J. T.; Swartz, C. R.; Anthony, J. E. Theor. Chem.
      Acc.
      2011, 128, 521. doi:10.1007/s00214-010-0821-8

    47. [47]

      (47) Li, X.; Xing, J.; Zhang, C.; Han, B.; Zhang, Y.; Wen, T.; Leng, R.; Jiang, Z.; Ai, Y.; Wang, X. ACS Sustain. Chem. Eng. 2018, 6, 10606. doi:10.1021/acssuschemeng.8b01934

    48. [48]

      (48) Wang, R.; Yang, P.; Wang, S.; Wang, X. J. Catal. 2021, 402, 166. doi:10.1016/j.jcat.2021.08.025

    49. [49]

      (49) Shanthi, P. M.; Hanumantha, P. J.; Ramalinga, K.; Gattu, B.; Datta, M. K.; Kumta, P. N. J. Electrochem. Soc. 2019, 166, A1827. doi:10.1149/2.0251910jes

    50. [50]

      (50) Shmila, T.; Mondal, S.; Barzilai, S.; Karjule, N.; Volokh, M.; Shalom, M. Small 2023, 19, 2303602. doi:10.1002/smll.202303602

    51. [51]

      (51) Pulignani, C.; Mesa, C. A.; Hillman, S. A. J.; Uekert, T.; Giménez, S.; Durrant, J. R.; Reisner, E. Angew. Chem. Int. Ed. 2022, 61, e202211587. doi:10.1002/anie.202211587

    52. [52]

      (52) Li, H.; Zhu, B.; Cheng, B.; Luo, G.; Xu, J.; Cao, S. J. Mater. Sci. Techol. 2023, 161, 192. doi:10.1016/j.jmst.2023.03.039

    53. [53]

      (53) Asrami, M. R.; Jourshabani, M.; Park, M. H.; Shin, D.; Lee, B. K. J. Mater. Sci. Techol. 2023, 159, 99. doi:10.1016/j.jmst.2023.02.049

    54. [54]

      (54) Bian, Y.; He, H.; Dawson, G.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 514. doi:10.1007/s40843-023-2725-y

    55. [55]

      (55) Bhowmik, T.; Kundu, M. K.; Barman, S. ACS Appl. Energy Mater. 2018, 1, 1200. doi:10.1021/acsaem.7b00305

    56. [56]

      (56) Mansor, N.; Jorge, A. B.; Corà, F.; Gibbs, C.; Jervis, R.; McMillan, P. F.; Wang, X.; Brett, D. J. L. J. Phys. Chem. C 2014, 118, 6831. doi:10.1021/jp412501j

    57. [57]

      (57) Ruan, Q.; Miao, T.; Wang, H.; Tang, J. J. Am. Chem. Soc. 2020, 142, 2795. doi:10.1021/jacs.9b10476

    58. [58]

      (58) Zhang, J.; Yang, G.; He, B.; Cheng, B.; Li, Y.; Liang, G.; Wang, L. Chin. J. Catal. 2022, 43, 2530. doi:10.1016/S1872-2067(22)64108-1

    59. [59]

      (59) Saraswathi, A.; Shobanadevi, N.; Muthupriya, M.; Yusuf, M. B. M.; Sheeba, T. A. J. Electron. Mater. 2024, 53, 3384. doi:10.1007/s11664-024-11056-2

    60. [60]

      (60) Yang, T.; Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2024, 58, 157. doi:10.1016/S1872-2067(23)64607-8

  • 加载中
    1. [1]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    2. [2]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    10. [10]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    13. [13]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    14. [14]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    15. [15]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    16. [16]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    17. [17]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    18. [18]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    20. [20]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

Metrics
  • PDF Downloads(0)
  • Abstract views(77)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return