Citation: Jiaxin Su, Jiaqi Zhang, Shuming Chai, Yankun Wang, Sibo Wang, Yuanxing Fang. Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240801. doi: 10.3866/PKU.WHXB202408012
-
Polymer-based photoanodes for the water oxidation reaction have recently garnered attention, with carbon nitride standing out due to its numerous advantages. This study focuses on synthesizing crystalline carbon nitride photoanodes, specifically poly(heptazine imide) (PHI), and explores the role of salts in their production. Using a binary molten salt system, optimal photocurrent density of 365 μA·cm-2 was achieved with a voltage bias of 1.23 V versus the reversible hydrogen electrode under AM 1.5G illumination, this performance is ca. 18 times to the pristine PCN photoanode. In this process, NH₄SCN facilitates the growth of SnS2 seeding layers, while K2CO3 enhances film crystallinity. In situ electrochemical analyses show that this salt combination improves photoexcited charge transfer efficiency and minimizes resistance in the SnS2 layer. This study clarifies the role of salts in synthesizing the PHI photoanode and provides insights for designing high-crystallinity carbon nitride-based functional films.
-
-
[1]
(1) Fang, Y.; Hou, Y.; Fu, X.; Wang, X. Chem. Rev. 2022, 122, 4204. doi:10.1021/acs.chemrev.1c00686
-
[2]
-
[3]
-
[4]
-
[5]
(5) Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J.; Wang, L. J. Mater. Sci. Techol. 2022, 124, 193. doi:10.1016/j.jmst.2022.01.029
-
[6]
(6) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi:10.1002/anie.202218688
-
[7]
(7) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi:10.1038/nmat2317
-
[8]
-
[9]
(9) Zheng, D.; Yang, L.; Chen, W.; Fang, Y.; Wang, X. ChemSusChem. 2021, 14, 3821. doi:10.1002/cssc.202101346
-
[10]
(10) Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G. I. N.; Wu, L.; Tung, C.; Zhang, T. Adv. Mater. 2016, 28, 9454. doi:10.1002/adma.201602581
-
[11]
(11) Bornoz, P.; Prévot, M. S.; Yu, X.; Guijarro, N.; Sivula, K. J. Am. Chem. Soc. 2015, 137, 15338. doi:10.1021/jacs.5b05724
-
[12]
(12) Sprick, R. S.; Chen, Z.; Cowan, A. J.; Bai, Y.; Aitchison, C. M.; Fang, Y.; Zwijnenburg, M. A.; Cooper, A. I.; Wang, X. Angew. Chem. Int. Ed. 2020, 59, 18695. doi:10.1002/anie.202008000
-
[13]
(13) Lan, Z.; Fang, Y.; Zhang, Y.; Wang, X. Angew. Chem. Int. Ed. 2018, 57, 470. doi:10.1002/anie.201711155
-
[14]
(14) Chai, S.; Zhao, S.; Su, J.; Zhang, J.; Chen, X.; Sprick, R. S.; Fang, Y. Chem. Sci. 2024, doi:10.1039/D4SC03512G
-
[15]
(15) Chai, S.; Chen, X.; Zhang, X.; Fang, Y.; Sprick, R. S.; Chen, X. Environ. Sci.: Nano 2022, 9, 2464. doi:10.1039/D2EN00135G
-
[16]
(16) Li, G.; Fu, P.; Yue, Q.; Ma, F.; Zhao, X.; Dong, S.; Han, X.; Zhou, Y.; Wang, J. Chem Catal. 2022, 2, 1734. doi:10.1016/j.checat.2022.05.002
-
[17]
(17) Zheng, Y.; Chen, Y.; Gao, B.; Lin, B.; Wang, X. Adv. Funct. Mater. 2020, 30, 2002021. doi:10.1002/adfm.202002021
-
[18]
(18) Wang, L.; Wan, Y.; Ding, Y.; Wu, S.; Zhang, Y.; Zhang, X.; Zhang, G.; Xiong, Y.; Wu, X.; Yang, J.; et al. Adv. Mater. 2017, 29, 1702428. doi:10.1002/adma.201702428
-
[19]
-
[20]
(20) Adler, C.; Selim, S.; Krivtsov, I.; Li, C.; Mitoraj, D.; Dietzek, B.; Durrant, J. R.; Beranek, R. Adv. Funct. Mater. 2021, 31, 2105369. doi:10.1002/adfm.202105369
-
[21]
(21) Fang, Y.; Li, X.; Wang, X. ACS Catal. 2018, 8, 8774. doi:10.1021/acscatal.8b02549
-
[22]
(22) Li, X.; Wang, J.; Xia, J.; Fang, Y.; Hou, Y.; Fu, X.; Shalom, M.; Wang, X. ChemSusChem 2022, 15, e202200330. doi:10.1002/cssc.202200330
-
[23]
(23) Lan, Z.; Zhang, G.; Wang, X. Appl. Catal. B 2016, 192, 116. doi:10.1016/j.apcatb.2016.03.062
-
[24]
(24) Li, X.; Wang, J.; Fang, Y.; Zhang, H.; Fu, X.; Wang, X. Acc. Mater. Res. 2021, 2, 933. doi:10.1021/accountsmr.1c00148
-
[25]
(25) Jiang, Y.; Cao, C.; Tan, Y.; Chen, Q.; Zeng, L.; Yang, W.; Sun, Z.; Huang, L. J. Mater. Sci. Techol. 2023, 141, 32. doi:10.1016/j.jmst.2022.09.024
-
[26]
(26) Peng, G.; Xing, L.; Barrio, J.; Volokh, M.; Shalom, M. Angew. Chem. Int. Ed. 2018, 57, 1186. doi:10.1002/anie.201711669
-
[27]
(27) Luo, M.; Jiang, G.; Yu, M.; Yan, Y.; Qin, Z.; Li, Y.; Zhang, Q. J. Mater. Sci. Techol. 2023, 161, 220. doi:10.1016/j.jmst.2023.03.038
-
[28]
(28) Adler, C.; Krivtsov, I.; Mitoraj, D.; dos Santos-Gómez, L.; García-Granda, S.; Neumann, C.; Kund, J.; Kranz, C.; Mizaikoff, B.; Turchanin, A.; et al. ChemSusChem 2021, 14, 2170. doi:10.1002/cssc.202100313
-
[29]
(29) Li, X.; Chen, X.; Fang, Y.; Lin, W.; Hou, Y.; Anpo, M.; Fu, X.; Wang, X. Chem. Sci. 2022, 13, 7541. doi:10.1039/D2SC02043B
-
[30]
(30) Zhu, J.; Zhang, G.; Xu, Y.; Huang, W.; He, C.; Zhang, P.; Mi, H. Inorg. Chem. Front. 2022, 9, 4320. doi:10.1039/D2QI00715K
-
[31]
(31) Burmeister, D.; Müller, J.; Plaickner, J.; Kochovski, Z.; List-Kratochvil, E. J. W.; Bojdys, M. J. Chem. Eur. J. 2022, 28, e202200705. doi:10.1002/chem.202200705
-
[32]
(32) Resasco, J.; Zhang, H.; Kornienko, N.; Becknell, N.; Lee, H.; Guo, J.; Briseno, A. L.; Yang, P. ACS Central Sci. 2016, 2, 80. doi:10.1021/acscentsci.5b00402
-
[33]
(33) Bera, S.; Lee, S. A.; Lee, W.-J.; Kim, J.-H.; Kim, C.; Kim, H. G.; Khan, H.; Jana, S.; Jang, H. W.; Kwon, S.-H. ACS Appl. Mater. Interfaces 2021, 13, 14291. doi:10.1021/acsami.1c00958
-
[34]
(34) Markushyna, Y.; Teutloff, C.; Kurpil, B.; Cruz, D.; Lauermann, I.; Zhao, Y.; Antonietti, M.; Savateev, A. Appl. Catal. B. 2019, 248, 211. doi:10.1016/j.apcatb.2019.02.016
-
[35]
(35) Karjule, N.; Barrio, J.; Xing, L.; Volokh, M.; Shalom, M. Nano Lett. 2020, 20, 4618. doi:10.1021/acs.nanolett.0c01484
-
[36]
(36) Chang, M.; Pan, Z.; Zheng, D.; Wang, S.; Zhang, G.; Anpo, M.; Wang, X. ChemSusChem 2023, 16, e202202255. doi:10.1002/cssc.202202255
-
[37]
(37) Zhou, M.; Zeng, L.; Li, R.; Yang, C.; Qin, X.; Ho, W.; Wang, X. Appl. Catal. B. 2022, 317, 121719. doi:10.1016/j.apcatb.2022.121719
-
[38]
(38) Pan, Z.; Zhao, M.; Zhuzhang, H.; Zhang, G.; Anpo, M.; Wang, X. ACS Catal. 2021, 11, 13463. doi:10.1021/acscatal.1c03687
-
[39]
(39) Zhang, G.; Li, G.; Lan, Z.; Lin, L.; Savateev, A.; Heil, T.; Zafeiratos, S.; Wang, X.; Antonietti, M. Angew. Chem. Int. Ed. 2017, 56, 13445. doi:10.1002/anie.201706870
-
[40]
(40) Guo, F.; Hu, B.; Yang, C.; Zhang, J.; Hou, Y.; Wang, X. Adv. Mater. 2021, 33, 2101466. doi:10.1002/adma.202101466
-
[41]
(41) Zhang, J.; Liang, X.; Zhang, C.; Lin, L.; Xing, W.; Yu, Z.; Zhang, G.; Wang, X. Angew. Chem. Int. Ed. 2022, 61, e202210849. doi:10.1002/anie.202210849
-
[42]
(42) Wu, K.; Li, X.; Wang, W.; Huang, Y.; Jiang, Q.; Li, W.; Chen, Y.; Yang, Y.; Li, C. ACS Catal. 2022, 12, 8. doi:10.1021/acscatal.1c03669
-
[43]
(43) Tashakory, A.; Mondal, S.; Battula, V. R.; Mark, G.; Shmila, T.; Volokh, M.; Shalom, M. Small Struct. 2024, n/a, 2400123. doi:10.1002/sstr.202400123
-
[44]
(44) Tan, H.; Gu, X.; Kong, P.; Lian, Z.; Li, B.; Zheng, Z. Appl. Catal., B. 2019, 242, 67. doi:10.1016/j.apcatb.2018.09.084
-
[45]
(45) Li, K.; Jiang, Y.; Li, Y.; Wang, Z.; Liu, X.; Wang, P.; Xia, D.; Fan, R.; Lin, K.; Yang, Y. Int. J. Hydrog. Energy 2020, 45, 9683. doi:10.1016/j.ijhydene.2020.01.200
-
[46]
(46) Aragó, J.; Viruela, P. M.; Ortí, E.; Malavé Osuna, R.; Hernández, V.; López Navarrete, J. T.; Swartz, C. R.; Anthony, J. E. Theor. Chem.
Acc. 2011, 128, 521. doi:10.1007/s00214-010-0821-8
-
[47]
(47) Li, X.; Xing, J.; Zhang, C.; Han, B.; Zhang, Y.; Wen, T.; Leng, R.; Jiang, Z.; Ai, Y.; Wang, X. ACS Sustain. Chem. Eng. 2018, 6, 10606. doi:10.1021/acssuschemeng.8b01934
-
[48]
(48) Wang, R.; Yang, P.; Wang, S.; Wang, X. J. Catal. 2021, 402, 166. doi:10.1016/j.jcat.2021.08.025
-
[49]
(49) Shanthi, P. M.; Hanumantha, P. J.; Ramalinga, K.; Gattu, B.; Datta, M. K.; Kumta, P. N. J. Electrochem. Soc. 2019, 166, A1827. doi:10.1149/2.0251910jes
-
[50]
(50) Shmila, T.; Mondal, S.; Barzilai, S.; Karjule, N.; Volokh, M.; Shalom, M. Small 2023, 19, 2303602. doi:10.1002/smll.202303602
-
[51]
(51) Pulignani, C.; Mesa, C. A.; Hillman, S. A. J.; Uekert, T.; Giménez, S.; Durrant, J. R.; Reisner, E. Angew. Chem. Int. Ed. 2022, 61, e202211587. doi:10.1002/anie.202211587
-
[52]
(52) Li, H.; Zhu, B.; Cheng, B.; Luo, G.; Xu, J.; Cao, S. J. Mater. Sci. Techol. 2023, 161, 192. doi:10.1016/j.jmst.2023.03.039
-
[53]
(53) Asrami, M. R.; Jourshabani, M.; Park, M. H.; Shin, D.; Lee, B. K. J. Mater. Sci. Techol. 2023, 159, 99. doi:10.1016/j.jmst.2023.02.049
-
[54]
(54) Bian, Y.; He, H.; Dawson, G.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 514. doi:10.1007/s40843-023-2725-y
-
[55]
(55) Bhowmik, T.; Kundu, M. K.; Barman, S. ACS Appl. Energy Mater. 2018, 1, 1200. doi:10.1021/acsaem.7b00305
-
[56]
(56) Mansor, N.; Jorge, A. B.; Corà, F.; Gibbs, C.; Jervis, R.; McMillan, P. F.; Wang, X.; Brett, D. J. L. J. Phys. Chem. C 2014, 118, 6831. doi:10.1021/jp412501j
-
[57]
(57) Ruan, Q.; Miao, T.; Wang, H.; Tang, J. J. Am. Chem. Soc. 2020, 142, 2795. doi:10.1021/jacs.9b10476
-
[58]
(58) Zhang, J.; Yang, G.; He, B.; Cheng, B.; Li, Y.; Liang, G.; Wang, L. Chin. J. Catal. 2022, 43, 2530. doi:10.1016/S1872-2067(22)64108-1
-
[59]
(59) Saraswathi, A.; Shobanadevi, N.; Muthupriya, M.; Yusuf, M. B. M.; Sheeba, T. A. J. Electron. Mater. 2024, 53, 3384. doi:10.1007/s11664-024-11056-2
-
[60]
(60) Yang, T.; Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2024, 58, 157. doi:10.1016/S1872-2067(23)64607-8
-
[1]
-
-
[1]
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
-
[2]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[3]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[4]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[5]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[6]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[7]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[8]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[9]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[10]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[11]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[12]
Qingyang Cui , Feng Yu , Zirun Wang , Bangkun Jin , Wanqun Hu , Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046
-
[13]
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
-
[14]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[15]
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
-
[16]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[17]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[18]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[19]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[20]
Lijuan Liu , Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(76)
- HTML views(9)