In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction
- Corresponding author: Yanfeng Zhang, zhangyanfeng@hebtu.edu.cn
Citation:
Jianyu Qin, Yuejiao An, Yanfeng Zhang. In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction[J]. Acta Physico-Chimica Sinica,
;2024, 40(12): 240800.
doi:
10.3866/PKU.WHXB202408002
Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475
doi: 10.1038/nature11475
Talapaneni, S. N.; Singh, G.; Kim, I. Y.; Albahily, K.; Al-Muhtaseb, A. H.; Karakoti, A. S.; Tavakkoli, E.; Vinu, A. Adv. Mater. 2020, 32, 1904635. doi: 10.1002/adma.201904635
doi: 10.1002/adma.201904635
Navarro-Jaen, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Nat Rev Chem. 2021, 5, 564. doi: 10.1038/s41570-021-00289-y
doi: 10.1038/s41570-021-00289-y
Wang, Z.; Zou, G.; Park, J. H.; Zhang, K. Sci. China Mater. 2024, 67 (2), 397. doi: 10.1007/s40843-023-2698-5
doi: 10.1007/s40843-023-2698-5
Jin, S.; Hao, Z.; Zhang, K.; Yan, Z.; Chen, J. Angew. Chem. Int. Ed. 2021, 60, 20627. doi: 10.1002/anie.202101818
doi: 10.1002/anie.202101818
Ran, J.; Jaroniec, M.; Qiao, S. Adv. Mater. 2018, 30, 1704649. doi: 10.1002/adma.201704649
doi: 10.1002/adma.201704649
Zhang, X.; Liu, K.; Fu, J.; Li, H.; Pan, H.; Hu, J.; Liu, M. Front. Phys. 2021, 16, 63500. doi: 10.1007/s11467-021-1079-4
doi: 10.1007/s11467-021-1079-4
Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi: 10.1038/s41467-021-25007-6
doi: 10.1038/s41467-021-25007-6
Wang, L.; Zhang, S.; Zhang, L.; Yu, J. Appl. Catal. B 2024, 355, 124167. doi: 10.1016/j.apcatb.2024.124167
doi: 10.1016/j.apcatb.2024.124167
Song, M.; Song, X.; Liu, X.; Zhou, W.; Huo, P. Chin. J. Catal. 2023, 51, 180. doi: 10.1016/S1872-2067(23)64480-8
doi: 10.1016/S1872-2067(23)64480-8
Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi: 10.1002/adma.202400288
doi: 10.1002/adma.202400288
Lin, M.; Chen, H.; Zhang, Z.; Wang, X. Phys. Chem. Chem. Phys. 2023, 25, 4388. doi: 10.1039/d2cp05281d
doi: 10.1039/d2cp05281d
Wang, X.; Chen, Q.; Zhou, Y.; Tan, Y.; Wang, Y.; Li, H.; Chen, Y.; Sayed, M.; Geioushy, R. A.; Allam, N. K.; et al. Nano Res. 2024, 17, 1101. doi: 10.1007/s12274-023-5910-9
doi: 10.1007/s12274-023-5910-9
Wu, Y.; Zhou, S.; He, T.; Jin, X.; Lun, L. Appl. Surf. Sci. 2019, 484, 409. doi: 10.1016/j.apsusc.2019.04.116
doi: 10.1016/j.apsusc.2019.04.116
Liu, J.; He, D. J. CO2 Util. 2018, 26, 370. doi: 10.1016/j.jcou.2018.05.025
doi: 10.1016/j.jcou.2018.05.025
Liang, T.; Yu, Z.; Bin, Y.; Zhang, S.; Wei, J.; Liu, Y.; Zhu, T.; Fan, S.; Shen, Y.; Wang, S.; et al. Chem. Eng. J. 2024, 479, 147942. doi: 10.1016/j.cej.2023.147942
doi: 10.1016/j.cej.2023.147942
Zhang, C.; Zhang, H.; Zhang, K.; Li, X.; Leng, Q.; Hu, C. ACS Appl. Mater. Interfaces 2014, 6, 14423. doi: 10.1021/am503696b
doi: 10.1021/am503696b
Bai, X.; Wang, L.; Zhu, Y. ACS Catal. 2012, 2, 2769. doi: 10.1021/cs3005852
doi: 10.1021/cs3005852
Xiang, D.; Hao, X.; Guo, X.; Wang, G.; Yang, K.; Jin, Z. Adv. Mater. Interfaces 2022, 9, 2201400. doi: 10.1002/admi.202201400
doi: 10.1002/admi.202201400
Li, J.; Li, M.; Li, H.; Jin, Z. J. Mater. Chem. C 2022, 10, 2181. doi: 10.1039/d1tc04932a
doi: 10.1039/d1tc04932a
Wang, L.; Zhu, B.; Zhang, J.; Ghasemi, J. B.; Mousavi, M.; Yu, J. Matter 2022, 5, 4187. doi: 10.1016/j.matt.2022.09.009
doi: 10.1016/j.matt.2022.09.009
Xu, Q.; He, R.; Li, Y. Acta Phys. -Chim. Sin. 2023, 39 (6), 2211009. doi: 10.3866/PKU.WHXB202211009
doi: 10.3866/PKU.WHXB202211009
Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668
doi: 10.1002/adma.202107668
Lin, M.; Luo, M.; Liu, Y.; Shen, J.; Long, J.; Zhang, Z. Chin. J. Catal. 2023, 50, 239. doi: 10.1016/S1872-2067(23)64477-8
doi: 10.1016/S1872-2067(23)64477-8
Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010
doi: 10.1016/j.chempr.2020.06.010
Yan, J.; Wei, L. Acta Phys. -Chim. Sin. 2024, 40, 2312024. doi: 10.3866/PKU.WHXB202312024
doi: 10.3866/PKU.WHXB202312024
Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600
doi: 10.1002/adma.202310600
Hu, P.; Liang, G.; Zhu, B.; Macyk, W.; Yu, J.; Xu, F. ACS Catal. 2023, 13, 12623. doi: 10.1021/acscatal.3c03095
doi: 10.1021/acscatal.3c03095
Shao, X.; Li, K.; Li, J.; Cheng, Q.; Wang, G.; Wang, K. Chin. J. Catal. 2023, 51, 193. doi: 10.1016/S1872-2067(23)64478-X
doi: 10.1016/S1872-2067(23)64478-X
Ong, W.; Tan, L.; Ng, Y. H.; Yong, S.; Chai, S. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075
doi: 10.1021/acs.chemrev.6b00075
Fu, J.; Yu, J.; Jiang, C.; Cheng, B. Adv. Energy Mater. 2018, 8, 1701503. doi: 10.1002/aenm.201701503
doi: 10.1002/aenm.201701503
Rocha, G. F. S. R.; Da Silva, M. A. R.; Rogolino, A.; Diab, G. A. A.; Noleto, L. F. G.; Antonietti, M.; Teixeira, I. F. Chem. Soc. Rev. 2023, 52, 4878. doi: 10.1039/d2cs00806h
doi: 10.1039/d2cs00806h
Fu, J.; Wang, S.; Wang, Z.; Liu, K.; Li, H.; Liu, H.; Hu, J.; Xu, X.; Li, H.; Liu, M. Front. Phys. 2020, 15, 33201. doi: 10.1007/s11467-019-0950-z
doi: 10.1007/s11467-019-0950-z
Chen, D.; Wang, Z.; Fu, J.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67 (2), 541. doi: 10.1007/s40843-023-2770-8
doi: 10.1007/s40843-023-2770-8
Wu, X.; Tan, L.; Chen, G.; Kang, J.; Wang, G. Sci. China Mater. 2024, 67 (2), 444. doi: 10.1007/s40843-023-2755-2
doi: 10.1007/s40843-023-2755-2
Zhong, R.; Liang, Y.; Huang, F.; Liang, S.; Liu, S. Chin. J. Catal. 2023, 53, 109. doi: 10.1016/S1872-2067(23)64513-9
doi: 10.1016/S1872-2067(23)64513-9
Hu, S.; Qiao, P.; Liu, Z.; Zhang, X.; Zhang, F.; Ye, J.; Wang, D. J. Catal. 2024, 432, 115405. doi: 10.1016/j.jcat.2024.115405
doi: 10.1016/j.jcat.2024.115405
Shen, Y.; Han, Q.; Hu, J.; Gao, W.; Wang, L.; Yang, L.; Gao, C.; Shen, Q.; Wu, C.; Wang, X.; et al. ACS Appl. Energy Mater. 2020, 3, 6561. doi: 10.1021/acsaem.0c00750
doi: 10.1021/acsaem.0c00750
Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39 (6), 2212026. doi: 10.3866/PKU.WHXB202212026
doi: 10.3866/PKU.WHXB202212026
Li, Y.; Ren, Z.; He, Z.; Ouyang, P.; Duan, Y.; Zhang, W.; Lv, K.; Dong, F. Green Energy Environ. 2024, 9, 623. doi: 10.1016/j.gee.2023.02.012
doi: 10.1016/j.gee.2023.02.012
Li, Q.; Jiao, Y.; Tang, Y.; Zhou, J.; Wu, B.; Jiang, B.; Fu, H. J. Am. Chem. Soc. 2023, 145, 20837. doi: 10.1021/jacs.3c05234
doi: 10.1021/jacs.3c05234
Su, L.; Wang, P.; Li, M.; Zhao, Z.; Li, Y.; Zhan, S. Appl. Catal. B 2023, 335, 122890. doi: 10.1016/j.apcatb.2023.122890
doi: 10.1016/j.apcatb.2023.122890
He, W.; Wei, Y.; Xiong, J.; Tang, Z.; Wang, Y.; Wang, X.; Xu, H.; Zhang, X.; Yu, X.; Zhao, Z.; et al. J. Energy Chem. 2023, 80, 361. doi: 10.1016/j.jechem.2023.01.028
doi: 10.1016/j.jechem.2023.01.028
Rathi, V.; Panneerselvam, A.; Sathiyapriya, R. Diamond Relat. Mater. 2020, 108, 107981. doi: 10.1016/j.diamond.2020.107981
doi: 10.1016/j.diamond.2020.107981
Zhu, L.; Li, H.; Xu, Q.; Xiong, D.; Xia, P. J. Colloid Interface Sci. 2020, 564, 303. doi: 10.1016/j.jcis.2019.12.088
doi: 10.1016/j.jcis.2019.12.088
Guan, C.; Liao, Y.; Xiang, Q. Sci. China Mater. 2024, 67 (2), 473. doi: 10.1007/s40843-023-2703-0
doi: 10.1007/s40843-023-2703-0
Zhou, J.; Gao, B.; Wu, D.; Tian, C.; Ran, H.; Chen, W.; Huang, Q.; Zhang, W.; Qi, F.; Zhang, N. P.; et al. Adv. Funct. Mater. 2024, 34, 2308411. doi: 10.1002/adfm.202308411
doi: 10.1002/adfm.202308411
Omr, H. A. E.; Putikam, R.; Hussien, M. K.; Sabbah, A.; Lin, T.; Chen, K.; Wu, H.; Feng, S.; Lin, M.; Lee, H. Appl. Catal. B 2023, 324, 122231. doi: 10.1016/j.apcatb.2022.122231
doi: 10.1016/j.apcatb.2022.122231
Zhao, F.; Zhu, B.; Wang, L.; Yu, J. J. Colloid Interface Sci. 2024, 659, 486. doi: 10.1016/j.jcis.2023.12.173
doi: 10.1016/j.jcis.2023.12.173
He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067(23)64420-1
doi: 10.1016/S1872-2067(23)64420-1
Zhou, B.; Xu, S.; Wu, L.; Li, M.; Chong, Y.; Qiu, Y.; Chen, G.; Zhao, Y.; Feng, C.; Ye, D.; et al. Small 2023, 19, 2302058. doi: 10.1002/smll.202302058
doi: 10.1002/smll.202302058
He, Y.; Hu, P.; Zhang, J.; Liang, G.; Yu, J.; Xu, F. ACS Catal. 2024, 14, 1951. doi: 10.1021/acscatal.4c00026
doi: 10.1021/acscatal.4c00026
Meng, K.; Zhang, J.; Cheng, B.; Ren, X.; Xia, Z.; Xu, F.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2406460. doi: 10.1002/adma.202406460
doi: 10.1002/adma.202406460
Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi: 10.1038/s41467-024-49004-7
doi: 10.1038/s41467-024-49004-7
Yu, W.; Bie, C. Acta Phys. -Chim. Sin. 2024, 40 (4), 2307022. doi: 10.3866/PKU.WHXB202307022
doi: 10.3866/PKU.WHXB202307022
Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7
doi: 10.1038/s41467-020-18350-7
Luo, L.; Fu, L.; Liu, H.; Xu, Y.; Xing, J.; Chang, C.; Yang, D.; Tang, J. Nat. Commun. 2022, 13, 2930. doi: 10.1038/s41467-022-30434-0
doi: 10.1038/s41467-022-30434-0
Lei, B.; Cui, W.; Chen, P.; Chen, L.; Li, J.; Dong, F. ACS Catal. 2022, 12, 9670. doi: 10.1021/acscatal.2c02390
doi: 10.1021/acscatal.2c02390
Li, R.; Tung, C.; Zhu, B.; Lin, Y.; Tian, F.; Liu, T.; Chen, H.; Kuang, P.; Yu, J. Colloid Interface Sci. 2024, 674, 326. doi: 10.1016/j.jcis.2024.06.176
doi: 10.1016/j.jcis.2024.06.176
Miao, Z.; Wang, Q.; Zhang, Y.; Meng, L.; Wang, X. Appl. Catal. B 2022, 301, 120802. doi: 10.1016/j.apcatb.2021.120802
doi: 10.1016/j.apcatb.2021.120802
Li, Y.; Yin, Q.; Zeng, Y.; Liu, Z. Chem. Eng. J. 2022, 438, 135652. doi: 10.1016/j.cej.2022.135652
doi: 10.1016/j.cej.2022.135652
Fan, Y.; Hu, Z.; Hao, X.; Jin, Z. Carbon 2024, 228, 119418. doi: 10.1016/j.carbon.2024.119418
doi: 10.1016/j.carbon.2024.119418
Bian, Y.; He, H.; Dawson, G.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67 (2), 514. doi: 10.1007/s40843-023-2725-y
doi: 10.1007/s40843-023-2725-y
Xu, X,; Shao, C,; Zhang, J,; Wang, Z,; Dai, K. Acta Phys. -Chim. Sin. 2024, 40 (10), 2309031. doi: 10.3866/PKU.WHXB202309031
doi: 10.3866/PKU.WHXB202309031
Fu, L.; Zhang, R.; Yang, J.; Shi, J.; Jiang, H.; Tang, J. Adv. Energy Mater. 2023, 13, 2301118. doi: 10.1002/aenm.202301118
doi: 10.1002/aenm.202301118
Chen, G.; Li, H.; Zhou, Y.; Cai, C.; Liu, K.; Hu, J.; Li, H.; Fu, J.; Liu, M. Nanoscale 2021, 13, 13604. doi: 10.1039/d1nr03221f.
doi: 10.1039/d1nr03221f
Hao, J.; Zhang, Y.; Zhang, L.; Shen, J.; Meng, L.; Wang, X. Chem. Eng. J. 2023, 464, 142536. doi: 10.1016/j.cej.2023.142536
doi: 10.1016/j.cej.2023.142536
Liu, K.; Fu, J.; Zhu, L.; Zhang, X.; Li, H.; Liu, H.; Hu, J.; Liu, M. Nanoscale 2020, 12, 4903. doi: 10.1039/c9nr09117c
doi: 10.1039/c9nr09117c
Zhu, Z.; Huang, H.; Liu, L.; Chen, F.; Tian, N.; Zhang, Y.; Yu, H. Angew. Chem. Int. Ed. 2022, 61, e202203519. doi: 10.1002/anie.202203519
doi: 10.1002/anie.202203519
Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi: 10.1002/adma.202300643
doi: 10.1002/adma.202300643
Wu, J.; Li, K.; Yang, S.; Song, C.; Guo, X. Chem. Eng. J. 2023, 452, 139493. doi: 10.1016/j.cej.2022.139493
doi: 10.1016/j.cej.2022.139493
Wang, Q.; Miao, Z.; Zhang, Y.; Yan, T.; Meng, L.; Wang, X. ACS Catal. 2022, 12, 4016. doi: 10.1021/acscatal.1c05553
doi: 10.1021/acscatal.1c05553
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
Haitao Wang , Lianglang Yu , Jizhou Jiang , Arramel , Jing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Zheng Liu , Yuqing Bian , Graham Dawson , Jiawei Zhu , Kai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039
Menglan Wei , Xiaoxia Ou , Yimeng Wang , Mengyuan Zhang , Fei Teng , Kaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105
Tianjun Ni , Hui Zhang , Liping Zhou , Roujie Ma , Yanyu Wang , Zhijun Yang , Dan Luo , Nithima Khaorapapong , Xingtao Xu , Yusuke Yamauchi , Dong Liu . Atomic cobalt catalysts on 3D interconnected g-C3N4 support for activation of peroxymonosulfate: The importance of Co-N coordination effect. Chinese Chemical Letters, 2025, 36(9): 110659-. doi: 10.1016/j.cclet.2024.110659
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012