Citation: Jianbao Mei, Bei Li, Shu Zhang, Dongdong Xiao, Pu Hu, Geng Zhang. Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240702. doi: 10.3866/PKU.WHXB202407023
-
Sodium-ion batteries (SIBs) are widely studied for energy storage applications, but achieving cathode materials with balanced high energy density, stability, and fast charge/discharge performance remains a key challenge. In this study, we successfully synthesized a series of NASICON-type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C, incorporating Mn, V, and Zr to investigate their impact on electrochemical performance. By introducing Zr alongside Mn and V, we developed a novel strategy to activate V4+/V5+ redox reactions, achieving high energy density. Moreover, this substitution promotes Na-ion migration by widening the migration pathways and generating additional Na vacancies, which greatly enhances electrode reaction kinetics and boosts overall performance. Na3.4Mn0.5V1.4Zr0.1(PO4)3/C demonstrates superior stability, retaining 90% of its capacity after 800 cycles, and delivers high-rate performance (84 mAh∙g-1 at 20C), significantly outperforming pristine Na3.5Mn0.5V1.5(PO4)3/C. These advancements highlight a potential approach for developing efficient and sustainable SIBs.
-
-
[1]
(1) Armand, M.; Tarascon, J.-M. Nature 2008, 451, 652. doi:10.1038/451652a
-
[2]
(2) Davies, D. M.; Verde, M. G.; Mnyshenko, O.; Chen, Y. R.; Rajeev, R.; Meng, Y. S.; Elliott, G. Nat. Energy 2018, 4, 42. doi:10.1038/s41560-018-0290-1
-
[3]
-
[4]
(4) Yu, H.; Ruan, X.; Wang, J.; Gu, Z.; Liang, Q.; Cao, J.-M.; Kang, J.; Du, C.-F.; Wu, X.-L. ACS Nano 2022, 16, 21174. doi:10.1021/acsnano.2c09122
-
[5]
(5) Song, C.; Li, S.; Bai, Y. Nano Res. 2023, 17, 2728. doi:10.1007/s12274-023-6164-2
-
[6]
(6) Chen, M.; Hua, W.; Xiao, J.; Zhang, J.; Lau, V. W.-H.; Park, M.; Lee, G.-H.; Lee, S.;Wang, W.; Peng, J.; et al. J. Am. Chem. Soc. 2021, 143, 18091. doi:10.1021/jacs.1c06727
-
[7]
(7) Wang, K.; Li, H.; Guo, G.; Zheng, L.; Passerini, S.; Zhang, H. ACS Energy Lett. 2023, 8, 1671. doi:10.1021/acsenergylett.2c02837
-
[8]
-
[9]
(9) Ahsan, Z.; Cai, Z.; Wang, S.; Moin, M.; Wang, H.; Liu, D.; Ma, Y.; Song, G.; Wen, C. Adv. Energy Mater. 2024, 14, 2400373. doi:10.1002/aenm.202400373
-
[10]
(10) Sun, L.; Wu, Z.; Hou, M.; Ni, Y.; Sun, H.; Jiao, P.; Li, H.; Zhang, W.; Zhang, L.; Zhang, K.; et al. Energy Environ. Sci. 2024, 17, 210. doi:10.1039/d3ee02817h
-
[11]
(11) Buryak, N. S.; Anishchenko, D. V.; Levin, E. E.; Ryazantsev, S. V.; Martin-Diaconescu, V.; Zakharkin, M. V.; Nikitina, V. A.; Antipov, E. V. J. Power Sources 2022, 518, 230769. doi:10.1016/j.jpowsour.2021.230769
-
[12]
(12) Xu, C.; Zhao, J.; Wang, Y.-A.; Hua, W.; Fu, Q.; Liang, X.; Rong, X.; Zhang, Q.; Guo, X.; Yang, C.; et al. Adv. Energy Mater. 2022, 12, 2200966. doi:10.1002/aenm.202200966
-
[13]
(13) Shao, Y.; Qian, Y.; Zhang, T.; Zhang, P.; Wang, H.; Qian, T.; Yan, C. Inorg. Chem. Front. 2024, 11, 4552. doi:10.1039/d4qi01141d
-
[14]
(14) Meng, W.; Dang, Z.; Li, D.; Jiang, L. Adv. Mater. 2023, 35, 2301376. doi:10.1002/adma.202301376
-
[15]
(15) Gao, H.; Seymour, I. D.; Xin, S.; Xue, L.; Henkelman, G.; Goodenough, J. B. J. Am. Chem. Soc 2018, 140, 18192. doi:10.1021/jacs.8b11388
-
[16]
(16) Tian, J.-L.; Wu, L.-R.; Zhao, H.-J.; Xu, S.-D.; Chen, L.; Zhang, D.; Duan, X.-C. Rare Met. 2023, 43, 113. doi:10.1007/s12598-023-02422-w
-
[17]
(17) Chu, S.; Guo, S.; Zhou, H. Chem. Soc. Rev 2021, 50, 13189. doi:10.1039/d1cs00442e
-
[18]
-
[19]
(19) Hu, P.; Zou, Z.; Sun, X.; Wang, D.; Ma, J.; Kong, Q.; Xiao, D.; Gu, L.; Zhou, X.; Zhao, J.; et al. Adv. Mater. 2020, 32, 1907526. doi:10.1002/adma.201907526
-
[20]
(20) Li, B.; Xiao, D.; Shang, C.; Wang, X.; Yan, M.; Hu, P. J. Alloy. Compd. 2024, 977, 173259 . doi:10.1016/j.jallcom.2023.173259
-
[21]
(21) Ge, X.; He, L.; Guan, C.; Wang, X.; Li, J.; Lai, Y.; Zhang, Z. ACS Nano 2023, 18, 1714. doi:10.1021/acsnano.3c10319
-
[22]
-
[23]
(23) Hou, J.; Hadouchi, M.; Sui, L.; Liu, J.; Tang, M.; Hay Kan, W.; Avdeev, M.; Zhong ,G.; Liao Y.; Lai Y.; et al. Energy Storage Mater. 2021, 42, 307. doi:10.1016/j.ensm.2021.07.040
-
[24]
(24) Singh, B.; Wang, Z.; Park, S.; Gautam, G. S.; Chotard, J.-N.; Croguennec, L.; Carlier, D.; Cheetham, A. K.; Masquelier, C.; Canepa, P. J. Mater. Chem. A 2021, 9, 281. doi:10.1039/d0ta10688g
-
[25]
(25) Snarskis, G.; Pilipavičius, J.; Gryaznov, D.; Mikoliu̅naitė, L.; Vilčiauskas, L. Chem. Mater 2021, 33, 8394. doi:10.1021/acs.chemmater.1c02775
-
[26]
(26) Huang, H.-B.; Luo, S.-H.; Liu, C.-L.; Yang, Y.; Zhai, Y.-C.; Chang, L.-J.; Li, M.-Q. Appl. Surf. Sci. 2019, 487, 1159. doi:10.1016/j.apsusc.2019.05.224
-
[27]
(27) Li, H.; Wang, Y.; Zhao, X.; Jin, J.; Shen, Q.; Li, J.; Liu, Y.; Qu, X.; Jiao, L.; Liu, Y. ACS Energy Lett. 2023, 8, 3666. doi:10.1021/acsenergylett.3c01183
-
[28]
(28) Qiao, S.; Zhou, Q.; Ma, M.; Liu, H.; Dou, S.; Chong, S. ACS Nano 2023, 17, 11220. doi:10.1021/acsnano.3c02892
-
[29]
(29) Zhao, Y.; Liu, Q.; Zhao, X.; Mu, D.; Tan, G.; Li, L.; Chen, R.; Wu, F. Mater. Today 2023, 62, 271. doi:10.1016/j.mattod.2022.11.024
-
[30]
(30) Guo, J. Z.; Zhang, H. X.; Gu, Z. Y.; Du, M.; Lu, H. Y.; Zhao, X. X.; Yang, J. L.; Li, W. H.; Kang, S.; Zou, W.; et al. Adv. Funct. Mater. 2022, 32, 2209482. doi:10.1002/adfm.202209482
-
[31]
(31) Li, B.; Mei, J.; Wang, X.; Shang, C.; Shen, X.; Hu, P. Energy Fuels 2024, 38, 1508. doi:10.1021/acs.energyfuels.3c03740
-
[32]
(32) Li, B.; Zou, Y.; Zhang, S.; Xiao, D.; Shang, C.; Wang, X.; Yan, M.; Hu, P. Electrochim. Acta 2024, 475, 143666. doi:10.1016/j.electacta.2023.143666
-
[33]
(33) Kabbour, H.; Coillot, D.; Colmont, M.; Masquelier, C.; Mentré, O. J. Am. Chem. Soc 2011, 133, 11900. doi:10.1021/ja204321y
-
[34]
(34) Geng, Y.; Zhang, T.; Xu, T.; Mao, W.; Li, D.; Dai, K.; Zhang, J.; Ai, G. Energy Storage Mater. 2022, 49, 67. doi:10.1016/j.ensm.2022.03.044
-
[35]
(35) Nagai, T.; Mochizuki, Y.; Yoshida, S.; Kimura, T. J. Am. Chem. Soc 2023, 145, 8090. doi:10.1021/jacs.3c00797
-
[36]
(36) Wang, S.-M.; Li, J.-Q.; Xu, L.; Sun, M.-J.; Huang, W.-J.; Liu, Q.; Ren, F.-T.; Sun, Y.-J.; Duan, L.-Y.; Ma, H.; et al. Rare Met. 2024, 43, 4253. doi:10.1007/s12598-024-02777-8
-
[37]
(37) Difi, S.; Saadoune, I.; Sougrati, M. T.; Hakkou, R.; Edstrom, K.; Lippens, P.-E. J. Phys. Chem. C 2015, 119, 25220. doi:10.1021/acs.jpcc.5b07931
-
[38]
-
[39]
(39) Liu, X.; Feng, G.; Wu, Z.; Wang, D.; Wu, C.; Yang, L.; Xiang, W.; Chen, Y.; Guo, X.; Zhong, B. J. Alloy. Compd. 2020, 815, 152430. doi:10.1016/j.jallcom.2019.152430
-
[40]
(40) Guo, J.-Z.; Gu, Z.-Y.; Du, M.; Zhao, X.-X.; Wang, X.-T.; Wu, X.-L. Mater. Today 2023, 66, 221. doi:10.1016/j.mattod.2023.03.020
-
[41]
(41) Liu, Y.; Rong, X.; Bai, R.; Xiao, R.; Xu, C.; Zhang, C.; Xu, J.; Yin, W.; Zhang, Q.; Liang, X.; et al. Nat. Energy 2023, 8, 1088. doi:10.1038/s41560-023-01301-z
-
[42]
-
[43]
(43) Liu, Y.; Zhou, Y.; Zhang, J.; Xia, Y.; Chen, T.; Zhang, S. ACS Sustain. Chem. Eng. 2016, 5, 1306. doi:10.1021/acssuschemeng.6b01536
-
[44]
(44) Qi, X.-R.; Liu, Y.; Ma, L.-L.; Hou, B.-X.; Zhang, H.-W.; Li, X.-H.; Wang, Y.-S.; Hui, Y.-Q.; Wang, R.-X.; Bai, C.-Y.; et al. Rare Met. 2022, 41, 1637. doi:10.1007/s12598-021-01900-3
-
[45]
-
[46]
-
[47]
(47) Tang, A.; Zhang, S.; Lin, W.; Xiao, D.; Ma, J.; Shang, C.; Yan, M.; Zhang, Z.; Chen, C.; Huang, Z.; et al. Energy Storage Mater. 2023, 58, 271. doi:10.1016/j.ensm.2023.03.024
-
[48]
(48) Zhou, W.; Xue, L.; Lü, X.; Gao, H.; Li, Y.; Xin, S.; Fu, G.; Cui, Z.; Zhu, Y.; Goodenough, J. B. Nano Lett. 2016, 16, 7836. doi:10.1021/acs.nanolett.6b04044
-
[49]
(49) Anishchenko, D. V.; Zakharkin, M. V.; Nikitina, V. A.; Stevenson, K. J.; Antipov, E. V. Electrochim. Acta 2020, 354, 136761. doi:10.1016/j.electacta.2020.136761
-
[50]
(50) Zhang, J.; Zhao, X.; Song, Y.; Li, Q.; Liu, Y.; Chen, J.; Xing, X. Energy Storage Mater. 2019, 23, 25. doi:10.1016/j.ensm.2019.05.041
-
[51]
-
[52]
(52) Han, Y.; Wang, X.; Yan, W.; Buzlukov, A. L.; Hu, P.; Zhang, L.; Yu, J.; Liu, T. ACS Appl. Mater. Interfaces 2024, 16, 35114. doi:10.1021/acsami.4c05943
-
[1]
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[3]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[4]
Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391
-
[5]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[6]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[7]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[8]
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
-
[9]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[10]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[11]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[12]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[13]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[14]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[15]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[16]
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
-
[17]
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
-
[18]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[19]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[20]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(72)
- HTML views(15)