Citation: Yuejiao An,  Wenxuan Liu,  Yanfeng Zhang,  Jianjun Zhang,  Zhansheng Lu. Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240702. doi: 10.3866/PKU.WHXB202407021 shu

Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction

  • Corresponding author: Yanfeng Zhang,  Jianjun Zhang,  Zhansheng Lu, 
  • Received Date: 23 July 2024
    Revised Date: 21 August 2024
    Accepted Date: 22 August 2024

    Fund Project: This work was supported by National Natural Science Foundation of China (12274118, 52202375), Natural Science Foundation of Hebei of China (B2020205013, B2022205008), Science and Technology Project of Hebei Normal University of China (L2021K01), Innovation Capability Improvement Plan Project of Hebei Province (22567604H), Henan Center for Outstanding Overseas Scientists (GZS2023007), Special Project for Fundamental Research in University of Henan Province (22ZX013). The simulations were performed on resources provided by the High-Performance Computing Center of Henan Normal University.

  • S-scheme heterojunctions can preserve strong redox capacity on the basis of achieving spatial separation of photogenerated carriers. Therefore, a deep comprehension of the photoinduced charge transfer dynamics in S-scheme heterostructures is vital to enhancing photocatalytic properties. Herein, SnO2/BiOBr S-scheme heterojunctions with tight contact are fabricated with in situ hydrothermal method. The optimal SnO2/BiOBr exhibits excellent photocatalytic performance for CO2 reduction, with yields of CO and CH4 of 345.7 and 6.7 μmol∙g-1∙h-1, which are 5.6 and 3.7 times higher than those of the original BiOBr. The photoinduced charge transfer mechanism and dynamics of SnO2/BiOBr S-scheme heterostructure are characterized by in situ X-ray photoelectron spectrum (XPS) and femtosecond transient absorption spectroscopy (fs-TA). A new fitted lifetime of photogenerated carriers are observed, which could be attributed to interfacial electron transfer of S-scheme heterojunction, further illustrating an ultrafast transfer channel for photoelectrons from SnO2 conduction band to BiOBr valence band. As a result, the powerful reduced electrons in BiOBr conduction band and the powerful oxidation holes in SnO2 valence band are retained. This work provides profound comprehension of photoinduced charge transfer mechanism of S-scheme heterojunction.
  • 加载中
    1. [1]

      (1) Mushtaq, N.; Ahmad, A.; Wang, X.; Khan, U.; Gao, J. Chem. Eng. J. 2024, 486, 150098. doi:10.1016/j.cej.2024.150098

    2. [2]

      (2) Jiang, Y.; Chen, Q.; Wang, D.; Li, X.; Xu, Y.; Xu, Z.; Guo, G. Nano Res. 2023, 16, 6661. doi:10.1007/s12274-023-5444-1

    3. [3]

      (3) Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39 (6), 2212026. doi:10.3866/PKU.WHXB202212026

    4. [4]

      (4) Wang, Z.; Zou, G.; Park, J. H.; Zhang, K. Sci. China Mater. 2024, 67 (2), 397. doi:10.1007/s40843-023-2698-5

    5. [5]

      (5) Zhao, F.; Zhu, B.; Wang, L.; Yu, J. J. Colloid Interface Sci. 2024, 659, 486. doi:10.1016/j.jcis.2023.12.173

    6. [6]

      (6) Li, R.; Tung, C.; Zhu, B.; Lin, Y.; Tian, F.; Liu, T.; Chen, H.; Kuang, P.; Yu, J. J. Colloid Interface Sci. 2024, 674, 326. doi:10.1016/j.jcis.2024.06.176

    7. [7]

      (7) Guan, C.; Liao, Y.; Xiang, Q. Sci. China Mater. 2024, 67 (2), 473. doi:10.1007/s40843-023-2703-0

    8. [8]

      (8) Xu, Q.; He, R.; Li, Y. Acta Phys. -Chim. Sin. 2023, 39 (6), 2211009. doi:10.3866/PKU.WHXB202211009

    9. [9]

      (9) Li, Y.; Gao, C.; Jiang, W.; Zhuang, C.; Tan, W.; Li, W.; Li, Y.; Wang, L.; Liao, X.; Sun, Z.; et al. Appl. Catal. B-Environ. 2021, 286, 119923. doi:10.1016/j.apcatb.2021.119923

    10. [10]

      (10) Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Tan, H. Sol. RRL 2022, 6, 2100587. doi:10.1002/solr.202100587

    11. [11]

      (11) Tu, W.; Zhou, Y.; Zou, Z. Adv. Mater. 2014, 26, 4607. doi:10.1002/adma.201400087

    12. [12]

      (12) Sun, Z.; Talreja, N.; Tao, H.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. Angew. Chem. Int. Ed. 2018, 57, 7610. doi:10.1002/anie.201710509

    13. [13]

      (13) Alhebshi, A.; Sharaf Aldeen, E.; Mim, R.S.; Tahir, B.; Tahir, M. Int. J. Energy Res. 2022, 46, 5523. doi:10.1002/er.7563

    14. [14]

      (14) Zhang, H.; Shao, C.; Wang, Z.; Zhang, J.; Dai, K. J. Mater. Sci. Technol. 2024, 195, 146. doi:10.1016/j.jmst.2023.11.081

    15. [15]

      (15) Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K. Adv. Mater. 2023, 35, 2300643. doi:10.1002/adma.202300643

    16. [16]

      (16) Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi:10.1002/adma.202310600

    17. [17]

      (17) Wang, L.; Zhu, B.; Zhang, J.; Ghasemi, J.B.; Mousavi, M.; Yu, J. Matter 2022, 5, 4187. doi:10.1016/j.matt.2022.09.009

    18. [18]

      (18) Yan, J.; Wei, L. Acta Phys. -Chim. Sin. 2024, 40, 2312024. doi:10.3866/PKU.WHXB202312024

    19. [19]

      (19) Yu, W.; Bie, C. Acta Phys. -Chim. Sin. 2024, 40 (4), 2307022. doi:10.3866/PKU.WHXB202307022

    20. [20]

      (20) Miao, Z.; Wang, Q.; Zhang, Y.; Meng, L.; Wang, X. Appl. Catal. B- Environ. 2022, 301, 120802. doi:10.1016/j.apcatb.2021.120802

    21. [21]

      (21) Xiao, Y.; Ji, Z.; Zou, C.; Xu, Y.; Wang, R.; Wu, J.; Liu, G.; He, P.; Wang, Q.; Jia, T. Appl. Surf. Sci. 2021, 556, 149767. doi:10.1016/j.apsusc.2021.149767

    22. [22]

      (22) Wang, S.; Zhang, D.; Pu, X.; Zhang, L.; Zhang, D.; Jiang, J. Small 2024, 2311504. doi:10.1002/smll.202311504

    23. [23]

      (23) Bian, Y.; He, H.; Dawson, G.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67 (2), 514. doi:10.1007/s40843-023-2725-y

    24. [24]

      (24) Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40 (10), 2309031. doi:10.3866/PKU.WHXB202309031

    25. [25]

      (25) Duo, F.; Wang, Y.; Mao, X.; Fan, C.; Zhang, H. Cryst. Res. Technol. 2014, 49, 721. doi:10.1002/crat.201400076

    26. [26]

      (26) Ren, Y.; Yang, Y.; Jing, X.; Wang, X.; Song, H. Mater. Lett. 2019, 257, 126681. doi:10.1016/j.matlet.2019.126681

    27. [27]

      (27) Deng, J.; Xu, D.; Zhang, J.; Xu, Q.; Yang, Y.; Wei, Z.; Su, Z. J. Mater. Sci. Technol. 2024, 180, 150. doi:10.1016/j.jmst.2023.04.053

    28. [28]

      (28) Deng, J.; Lei, W.; Fu, J.; Jin, H.; Xu, Q.; Wang, S. Sol. RRL 2022, 6 (8), 2200279. doi:10.1002/solr.202200279

    29. [29]

      (29) Li, X.; Li, K.; Ding, D.; Yan, J.; Wang, C.; Carabineiro, S. A. C.; Liu, Y.; Lv, K. Sep. Purif. Technol. 2023, 309, 123054. doi:10.1016/j.seppur.2022.123054

    30. [30]

      (30) (30) Ren, W.; Yang, J.; Zhang, J.; Li, W.; Sun, C.; Zhao, H.; Wen, Y.; Sha, O.; Liang, B. J. Alloy. Compd. 2022, 906, 164372. doi:10.1016/j.jallcom.2022.164372

    31. [31]

      (31) Chen, S.; Liu, F.; Xu, M.; Yan, J.; Zhang, F.; Zhao, W.; Zhang, Z.; Deng, Z.; Yun, J.; Chen, R.; et al. J. Colloid Interface Sci. 2019, 553, 613. doi:10.1016/j.jcis.2019.06.053

    32. [32]

      (32) Sharma, B.; Sharma, A.; Myung, J.h. Sensor. Actuat. B Chem. 2021, 349, 130733. doi:10.1016/j.snb.2021.130733

    33. [33]

      (33) Yang, T.; Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2024, 58, 157. doi:10.1016/S1872-2067(23)64607-8

    34. [34]

      (34) An, Y.; Zhang, Y.; Zhang, L. J. Alloy. Compd. 2024, 992, 174595. doi:10.1016/j.jallcom.2024.174595

    35. [35]

      (35) Sun, M.; Zhao, Q.; Du, C.; Liu, Z. RSC Adv. 2015, 5, 22740. doi:10.1039/c4ra14187c

    36. [36]

      (36) Hao, J.; Zhang, Y.; Zhang, L.; Shen, J.; Meng, L.; Wang, X. Chem. Eng. J. 2023, 464, 142536. doi:10.1016/j.cej.2023.142536

    37. [37]

      (37) Jiao, W.; Xie, Y.; He, F.; Wang, K.; Ling, Y.; Hu, Y.; Wang, J.; Ye, H.; Wu, J.; Hou, Y. Chem. Eng. J. 2021, 418, 129286. doi:10.1016/j.cej.2021.129286

    38. [38]

      (38) Guo, J.; Liao, X.; Lee, M.H.; Hyett, G.; Huang, C.C.; Hewak, D.W.; Mailis, S.; Zhou, W.; Jiang, Z. Appl. Catal. B-Environ. 2019, 243, 502. doi:10.1016/j.apcatb.2018.09.089

    39. [39]

      (39) Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi:10.1038/s41467-021-25007-6

    40. [40]

      (40) Hu, P.; Liang, G.; Zhu, B.; Macyk, W.; Yu, J.; Xu, F. ACS Catal. 2023, 13, 12623. doi:10.1021/acscatal.3c03095

    41. [41]

      (41) Sun, X.; Zhu, S.; He, D.; Lin, Y.; Ye, T. J. Colloid Interface Sci. 2024, 669, 295. doi:10.1016/j.jcis.2024.04.226

    42. [42]

      (42) Zhao, H.; Yu, Z.; Wu, R.; Yi, M.; Zhang, G.; Zhou, Y.; Han, Z.; Li, X.; Ma, F. J. Chin. Chem. Soc. 2022, 69, 925. doi:10.1002/jccs.202200016

    43. [43]

      (43) Yue, P.; Zhang, G.; Cao, X.; Wang, B.; Zhang, Y.; Wei, Y. Sep. Purif. Technol. 2019, 213, 34. doi:10.1016/j.seppur.2018.12.003

    44. [44]

      (44) Jia, Z.; Wang, F.; Xin, F.; Zhang, B. Ind. Eng. Chem. Res. 2011, 50, 6688. doi:10.1021/ie102310a

    45. [45]

      (45) Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi:10.1038/s41467-020-18350-7

    46. [46]

      (46) Zhang, Z.; Li, H.; Wang, X.; Su, S.; Xu, J. Chem. Eng. J. 2024, 493, 152473. doi:10.1016/j.cej.2024.152473

    47. [47]

      (47) Li, J.; Li, Z.; Liu, X.; Li, C.; Zheng, Y.; Yeung, K.; Cui, Z.; Liang, Y.; Zhu, S.; Hu, W.; et al. Nat. Commun. 2021, 12, 1224. doi:10.1038/s41467-021-21435-6

    48. [48]

      (48) Shao, G. Energy Environ. Mater. 2021, 4, 273. doi:10.1002/eem2.12218

    49. [49]

      (49) Zhao, X.; Li, J.; Song, X.; Liu, X.; Zhou, W.; Wang, H.; Huo, P. Appl. Surf. Sci. 2022, 601, 154246. doi:10.1016/j.apsusc.2022.154246

    50. [50]

      (50) Song, M.; Song, X.; Liu, X.; Zhou, W.; Huo, P. Chin. J. Catal. 2023, 51, 180. doi:10.1016/S1872-2067(23)64480-8

    51. [51]

      (51) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi:10.1002/anie.202218688

    52. [52]

      (52) Li, N.; Zhai, X.; Ma, B.; Zhang, H.; Xiao, M.; Wang, Q.; Zhang, H. J. Mater. Chem. A 2023, 11, 4020. doi:10.1039/d2ta09777j

    53. [53]

      (53) Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi:10.1002/adma.202400288

    54. [54]

      (54) Liu, B.; Cai, J.; Zhang, J.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 51, 204. doi:10.1016/S1872-2067(23)64466-3

    55. [55]

      (55) Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi:10.1038/s41467-024-49004-7

    56. [56]

      (56) He, Y.; Hu, P.; Zhang, J.; Liang, G.; Yu, J.; Xu, F. ACS Catal. 2024, 14, 1951. doi:10.1021/acscatal.4c00026

    57. [57]

      (57) Yu, H.; Huang, J.; Jiang, L.; Leng, L.; Yi, K.; Zhang, W.; Zhang, C.; Yuan, X. Appl. Catal. B-Environ. 2021, 298, 120618. doi:10.1016/j.apcatb.2021.120618

    58. [58]

      (58) Zhang, G.; Cai, L.; Zhang, Y.; Wei, Y. Chem. Eur. J. 2018, 24, 7434. doi:10.1002/chem.201706164

    59. [59]

      (59) Huang, W.; Zhu, Q. J. Comput. Chem. 2009, 30, 183. doi:10.1002/jcc.21055

    60. [60]

      (60) Zhuang, C.; Chang, Y.; Li, W.; Li, S.; Xu, P.; Zhang, H.; Zhang, Y.; Zhang, C.; Gao, J.; Chen, G.; et al. ACS Nano 2024, 18, 5206. doi:10.1021/acsnano.4c00217

    61. [61]

      (61) Shao, X.; Li, K.; Li, J.; Cheng, Q.; Wang, G.; Wang, K. Chin. J. Catal. 2023, 51, 193. doi:10.1016/S1872-2067(23)64478-X

    62. [62]

      (62) He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi:10.1016/S1872-2067(23)64420-1

    63. [63]

      (63) Wang, K.; Cheng, M.; Xia, F.; Cao, N.; Zhang, F.; Ni, W.; Yue, X.; Yan, K.; He, Y.; Shi, Y.; et al. Small 2023, 19, 2207581. doi:10.1002/smll.202207581

    64. [64]

      (64) Wang, B.; Wang, X.; Lu, L.; Zhou, C.; Xin, Z.; Wang, J.; Ke, X.; Sheng, G.; Yan, S.; Zou, Z. ACS Catal. 2018, 8, 516. doi:10.1021/acscatal.7b02952

    65. [65]

      (65) Wang, Q.; Jin, Y.; Zhang, Y.; Li, Y.; Wang, X.; Cao, X.; Wang, B. J. Colloid Interface Sci. 2022, 606, 1087. doi:10.1016/j.jcis.2021.08.116

    66. [66]

      (66) Meng, K.; Zhang, J.; Cheng, B.; Ren, X.; Xia, Z.; Xu, F.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2406460. doi:10.1002/adma.202406460

    67. [67]

      (67) Xu, J.; Ju, Z.; Zhang, W.; Pan, Y.; Zhu, J.; Mao, J.; Zheng, X.; Fu, H.; Yuan, M.; Chen, H.; et al. Angew. Chem. Int. Ed. 2021, 60, 8705. doi:10.1002/anie.202017041

    68. [68]

      (68) Heng, J.; Zhu, H.; Zhao, Z.; Yu, C.; Liao, P.; Chen, X. J. Am. Chem. Soc. 2023, 145, 21672. doi:10.1021/jacs.3c08571

    69. [69]

      (69) Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. J. Am. Chem. Soc. 2020, 142, 9567. doi:10.1021/jacs.0c02973

    70. [70]

      (70) Wang, L.; Zhang, S.; Zhang, L.; Yu, J. Appl. Catal. B 2024, 355, 124167. doi:10.1016/j.apcatb.2024.124167

    71. [71]

      (71) Collins, S.; Baltanas, M.; Bonivardi, A. J. Catal. 2004, 226, 410. doi:10.1016/j.jcat.2004.06.012

  • 加载中
    1. [1]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    2. [2]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    6. [6]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    7. [7]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    16. [16]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(0)
  • Abstract views(80)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return