Citation: Yuejiao An, Wenxuan Liu, Yanfeng Zhang, Jianjun Zhang, Zhansheng Lu. Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240702. doi: 10.3866/PKU.WHXB202407021 shu

Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction

  • Corresponding author: Yanfeng Zhang, zhangyanfeng@hebtu.edu.cn Jianjun Zhang, zhangjianjun@cug.edu.cn Zhansheng Lu, zslu@buct.edu.cn
  • Received Date: 23 July 2024
    Revised Date: 21 August 2024
    Accepted Date: 22 August 2024
    Available Online: 2 September 2024

    Fund Project: National Natural Science Foundation of China 12274118National Natural Science Foundation of China 52202375Natural Science Foundation of Hebei of China B2020205013Natural Science Foundation of Hebei of China B2022205008Science and Technology Project of Hebei Normal University of China L2021K01Innovation Capability Improvement Plan Project of Hebei Province 22567604HHenan Center for Outstanding Overseas Scientists GZS2023007Special Project for Fundamental Research in University of Henan Province 22ZX013

  • S-scheme heterojunctions can preserve strong redox capacity on the basis of achieving spatial separation of photogenerated carriers. Therefore, a deep comprehension of the photoinduced charge transfer dynamics in S-scheme heterostructures is vital to enhancing photocatalytic properties. Herein, SnO2/BiOBr S-scheme heterojunctions with tight contact are fabricated with in situ hydrothermal method. The optimal SnO2/BiOBr exhibits excellent photocatalytic performance for CO2 reduction, with yields of CO and CH4 of 345.7 and 6.7 μmol∙g–1∙h–1, which are 5.6 and 3.7 times higher than those of the original BiOBr. The photoinduced charge transfer mechanism and dynamics of SnO2/BiOBr S-scheme heterostructure are characterized by in situ X-ray photoelectron spectrum (XPS) and femtosecond transient absorption spectroscopy (fs-TA). A new fitted lifetime of photogenerated carriers are observed, which could be attributed to interfacial electron transfer of S-scheme heterojunction, further illustrating an ultrafast transfer channel for photoelectrons from SnO2 conduction band to BiOBr valence band. As a result, the powerful reduced electrons in BiOBr conduction band and the powerful oxidation holes in SnO2 valence band are retained. This work provides profound comprehension of photoinduced charge transfer mechanism of S-scheme heterojunction.
  • 加载中
    1. [1]

      Mushtaq, N.; Ahmad, A.; Wang, X.; Khan, U.; Gao, J. Chem. Eng. J. 2024, 486, 150098. doi: 10.1016/j.cej.2024.150098  doi: 10.1016/j.cej.2024.150098

    2. [2]

      Jiang, Y.; Chen, Q.; Wang, D.; Li, X.; Xu, Y.; Xu, Z.; Guo, G. Nano Res. 2023, 16, 6661. doi: 10.1007/s12274-023-5444-1  doi: 10.1007/s12274-023-5444-1

    3. [3]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39 (6), 2212026. doi: 10.3866/PKU.WHXB202212026  doi: 10.3866/PKU.WHXB202212026

    4. [4]

      Wang, Z.; Zou, G.; Park, J. H.; Zhang, K. Sci. China Mater. 2024, 67 (2), 397. doi: 10.1007/s40843-023-2698-5  doi: 10.1007/s40843-023-2698-5

    5. [5]

      Zhao, F.; Zhu, B.; Wang, L.; Yu, J. J. Colloid Interface Sci. 2024, 659, 486. doi: 10.1016/j.jcis.2023.12.173  doi: 10.1016/j.jcis.2023.12.173

    6. [6]

      Li, R.; Tung, C.; Zhu, B.; Lin, Y.; Tian, F.; Liu, T.; Chen, H.; Kuang, P.; Yu, J. J. Colloid Interface Sci. 2024, 674, 326. doi: 10.1016/j.jcis.2024.06.176  doi: 10.1016/j.jcis.2024.06.176

    7. [7]

      Guan, C.; Liao, Y.; Xiang, Q. Sci. China Mater. 2024, 67 (2), 473. doi: 10.1007/s40843-023-2703-0  doi: 10.1007/s40843-023-2703-0

    8. [8]

      Xu, Q.; He, R.; Li, Y. Acta Phys. -Chim. Sin. 2023, 39 (6), 2211009. doi: 10.3866/PKU.WHXB202211009  doi: 10.3866/PKU.WHXB202211009

    9. [9]

      Li, Y.; Gao, C.; Jiang, W.; Zhuang, C.; Tan, W.; Li, W.; Li, Y.; Wang, L.; Liao, X.; Sun, Z.; et al. Appl. Catal. B-Environ. 2021, 286, 119923. doi: 10.1016/j.apcatb.2021.119923  doi: 10.1016/j.apcatb.2021.119923

    10. [10]

      Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Tan, H. Sol. RRL 2022, 6, 2100587. doi: 10.1002/solr.202100587  doi: 10.1002/solr.202100587

    11. [11]

      Tu, W.; Zhou, Y.; Zou, Z. Adv. Mater. 2014, 26, 4607. doi: 10.1002/adma.201400087  doi: 10.1002/adma.201400087

    12. [12]

      Sun, Z.; Talreja, N.; Tao, H.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. Angew. Chem. Int. Ed. 2018, 57, 7610. doi: 10.1002/anie.201710509  doi: 10.1002/anie.201710509

    13. [13]

      Alhebshi, A.; Sharaf Aldeen, E.; Mim, R.S.; Tahir, B.; Tahir, M. Int. J. Energy Res. 2022, 46, 5523. doi: 10.1002/er.7563  doi: 10.1002/er.7563

    14. [14]

      Zhang, H.; Shao, C.; Wang, Z.; Zhang, J.; Dai, K. J. Mater. Sci. Technol. 2024, 195, 146. doi: 10.1016/j.jmst.2023.11.081  doi: 10.1016/j.jmst.2023.11.081

    15. [15]

      Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K. Adv. Mater. 2023, 35, 2300643. doi: 10.1002/adma.202300643  doi: 10.1002/adma.202300643

    16. [16]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    17. [17]

      Wang, L.; Zhu, B.; Zhang, J.; Ghasemi, J.B.; Mousavi, M.; Yu, J. Matter 2022, 5, 4187. doi: 10.1016/j.matt.2022.09.009  doi: 10.1016/j.matt.2022.09.009

    18. [18]

      Yan, J.; Wei, L. Acta Phys. -Chim. Sin. 2024, 40, 2312024. doi: 10.3866/PKU.WHXB202312024  doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Yu, W.; Bie, C. Acta Phys. -Chim. Sin. 2024, 40 (4), 2307022. doi: 10.3866/PKU.WHXB202307022  doi: 10.3866/PKU.WHXB202307022

    20. [20]

      Miao, Z.; Wang, Q.; Zhang, Y.; Meng, L.; Wang, X. Appl. Catal. B- Environ. 2022, 301, 120802. doi: 10.1016/j.apcatb.2021.120802  doi: 10.1016/j.apcatb.2021.120802

    21. [21]

      Xiao, Y.; Ji, Z.; Zou, C.; Xu, Y.; Wang, R.; Wu, J.; Liu, G.; He, P.; Wang, Q.; Jia, T. Appl. Surf. Sci. 2021, 556, 149767. doi: 10.1016/j.apsusc.2021.149767  doi: 10.1016/j.apsusc.2021.149767

    22. [22]

      Wang, S.; Zhang, D.; Pu, X.; Zhang, L.; Zhang, D.; Jiang, J. Small 2024, 2311504. doi: 10.1002/smll.202311504  doi: 10.1002/smll.202311504

    23. [23]

      Bian, Y.; He, H.; Dawson, G.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67 (2), 514. doi: 10.1007/s40843-023-2725-y  doi: 10.1007/s40843-023-2725-y

    24. [24]

      Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40 (10), 2309031. doi: 10.3866/PKU.WHXB202309031  doi: 10.3866/PKU.WHXB202309031

    25. [25]

      Duo, F.; Wang, Y.; Mao, X.; Fan, C.; Zhang, H. Cryst. Res. Technol. 2014, 49, 721. doi: 10.1002/crat.201400076  doi: 10.1002/crat.201400076

    26. [26]

      Ren, Y.; Yang, Y.; Jing, X.; Wang, X.; Song, H. Mater. Lett. 2019, 257, 126681. doi: 10.1016/j.matlet.2019.126681  doi: 10.1016/j.matlet.2019.126681

    27. [27]

      Deng, J.; Xu, D.; Zhang, J.; Xu, Q.; Yang, Y.; Wei, Z.; Su, Z. J. Mater. Sci. Technol. 2024, 180, 150. doi: 10.1016/j.jmst.2023.04.053  doi: 10.1016/j.jmst.2023.04.053

    28. [28]

      Deng, J.; Lei, W.; Fu, J.; Jin, H.; Xu, Q.; Wang, S. Sol. RRL 2022, 6 (8), 2200279. doi: 10.1002/solr.202200279  doi: 10.1002/solr.202200279

    29. [29]

      Li, X.; Li, K.; Ding, D.; Yan, J.; Wang, C.; Carabineiro, S. A. C.; Liu, Y.; Lv, K. Sep. Purif. Technol. 2023, 309, 123054. doi: 10.1016/j.seppur.2022.123054  doi: 10.1016/j.seppur.2022.123054

    30. [30]

      (30) Ren, W.; Yang, J.; Zhang, J.; Li, W.; Sun, C.; Zhao, H.; Wen, Y.; Sha, O.; Liang, B. J. Alloy. Compd. 2022, 906, 164372. doi: 10.1016/j.jallcom.2022.164372  doi: 10.1016/j.jallcom.2022.164372

    31. [31]

      Chen, S.; Liu, F.; Xu, M.; Yan, J.; Zhang, F.; Zhao, W.; Zhang, Z.; Deng, Z.; Yun, J.; Chen, R.; et al. J. Colloid Interface Sci. 2019, 553, 613. doi: 10.1016/j.jcis.2019.06.053  doi: 10.1016/j.jcis.2019.06.053

    32. [32]

      Sharma, B.; Sharma, A.; Myung, J. h. Sensor. Actuat. B Chem. 2021, 349, 130733. doi: 10.1016/j.snb.2021.130733  doi: 10.1016/j.snb.2021.130733

    33. [33]

      Yang, T.; Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2024, 58, 157. doi: 10.1016/S1872-2067(23)64607-8  doi: 10.1016/S1872-2067(23)64607-8

    34. [34]

      An, Y.; Zhang, Y.; Zhang, L. J. Alloy. Compd. 2024, 992, 174595. doi: 10.1016/j.jallcom.2024.174595  doi: 10.1016/j.jallcom.2024.174595

    35. [35]

      Sun, M.; Zhao, Q.; Du, C.; Liu, Z. RSC Adv. 2015, 5, 22740. doi: 10.1039/c4ra14187c  doi: 10.1039/c4ra14187c

    36. [36]

      Hao, J.; Zhang, Y.; Zhang, L.; Shen, J.; Meng, L.; Wang, X. Chem. Eng. J. 2023, 464, 142536. doi: 10.1016/j.cej.2023.142536  doi: 10.1016/j.cej.2023.142536

    37. [37]

      Jiao, W.; Xie, Y.; He, F.; Wang, K.; Ling, Y.; Hu, Y.; Wang, J.; Ye, H.; Wu, J.; Hou, Y. Chem. Eng. J. 2021, 418, 129286. doi: 10.1016/j.cej.2021.129286  doi: 10.1016/j.cej.2021.129286

    38. [38]

      Guo, J.; Liao, X.; Lee, M.H.; Hyett, G.; Huang, C.C.; Hewak, D.W.; Mailis, S.; Zhou, W.; Jiang, Z. Appl. Catal. B-Environ. 2019, 243, 502. doi: 10.1016/j.apcatb.2018.09.089  doi: 10.1016/j.apcatb.2018.09.089

    39. [39]

      Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi: 10.1038/s41467-021-25007-6  doi: 10.1038/s41467-021-25007-6

    40. [40]

      Hu, P.; Liang, G.; Zhu, B.; Macyk, W.; Yu, J.; Xu, F. ACS Catal. 2023, 13, 12623. doi: 10.1021/acscatal.3c03095  doi: 10.1021/acscatal.3c03095

    41. [41]

      Sun, X.; Zhu, S.; He, D.; Lin, Y.; Ye, T. J. Colloid Interface Sci. 2024, 669, 295. doi: 10.1016/j.jcis.2024.04.226  doi: 10.1016/j.jcis.2024.04.226

    42. [42]

      Zhao, H.; Yu, Z.; Wu, R.; Yi, M.; Zhang, G.; Zhou, Y.; Han, Z.; Li, X.; Ma, F. J. Chin. Chem. Soc. 2022, 69, 925. doi: 10.1002/jccs.202200016  doi: 10.1002/jccs.202200016

    43. [43]

      Yue, P.; Zhang, G.; Cao, X.; Wang, B.; Zhang, Y.; Wei, Y. Sep. Purif. Technol. 2019, 213, 34. doi: 10.1016/j.seppur.2018.12.003  doi: 10.1016/j.seppur.2018.12.003

    44. [44]

      Jia, Z.; Wang, F.; Xin, F.; Zhang, B. Ind. Eng. Chem. Res. 2011, 50, 6688. doi: 10.1021/ie102310a  doi: 10.1021/ie102310a

    45. [45]

      Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    46. [46]

      Zhang, Z.; Li, H.; Wang, X.; Su, S.; Xu, J. Chem. Eng. J. 2024, 493, 152473. doi: 10.1016/j.cej.2024.152473  doi: 10.1016/j.cej.2024.152473

    47. [47]

      Li, J.; Li, Z.; Liu, X.; Li, C.; Zheng, Y.; Yeung, K.; Cui, Z.; Liang, Y.; Zhu, S.; Hu, W.; et al. Nat. Commun. 2021, 12, 1224. doi: 10.1038/s41467-021-21435-6  doi: 10.1038/s41467-021-21435-6

    48. [48]

      Shao, G. Energy Environ. Mater. 2021, 4, 273. doi: 10.1002/eem2.12218  doi: 10.1002/eem2.12218

    49. [49]

      Zhao, X.; Li, J.; Song, X.; Liu, X.; Zhou, W.; Wang, H.; Huo, P. Appl. Surf. Sci. 2022, 601, 154246. doi: 10.1016/j.apsusc.2022.154246  doi: 10.1016/j.apsusc.2022.154246

    50. [50]

      Song, M.; Song, X.; Liu, X.; Zhou, W.; Huo, P. Chin. J. Catal. 2023, 51, 180. doi: 10.1016/S1872-2067(23)64480-8  doi: 10.1016/S1872-2067(23)64480-8

    51. [51]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688  doi: 10.1002/anie.202218688

    52. [52]

      Li, N.; Zhai, X.; Ma, B.; Zhang, H.; Xiao, M.; Wang, Q.; Zhang, H. J. Mater. Chem. A 2023, 11, 4020. doi: 10.1039/d2ta09777j  doi: 10.1039/d2ta09777j

    53. [53]

      Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi: 10.1002/adma.202400288  doi: 10.1002/adma.202400288

    54. [54]

      Liu, B.; Cai, J.; Zhang, J.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 51, 204. doi: 10.1016/S1872-2067(23)64466-3  doi: 10.1016/S1872-2067(23)64466-3

    55. [55]

      Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi: 10.1038/s41467-024-49004-7  doi: 10.1038/s41467-024-49004-7

    56. [56]

      He, Y.; Hu, P.; Zhang, J.; Liang, G.; Yu, J.; Xu, F. ACS Catal. 2024, 14, 1951. doi: 10.1021/acscatal.4c00026  doi: 10.1021/acscatal.4c00026

    57. [57]

      Yu, H.; Huang, J.; Jiang, L.; Leng, L.; Yi, K.; Zhang, W.; Zhang, C.; Yuan, X. Appl. Catal. B-Environ. 2021, 298, 120618. doi: 10.1016/j.apcatb.2021.120618  doi: 10.1016/j.apcatb.2021.120618

    58. [58]

      Zhang, G.; Cai, L.; Zhang, Y.; Wei, Y. Chem. Eur. J. 2018, 24, 7434. doi: 10.1002/chem.201706164  doi: 10.1002/chem.201706164

    59. [59]

      Huang, W.; Zhu, Q. J. Comput. Chem. 2009, 30, 183. doi: 10.1002/jcc.21055  doi: 10.1002/jcc.21055

    60. [60]

      Zhuang, C.; Chang, Y.; Li, W.; Li, S.; Xu, P.; Zhang, H.; Zhang, Y.; Zhang, C.; Gao, J.; Chen, G.; et al. ACS Nano 2024, 18, 5206. doi: 10.1021/acsnano.4c00217  doi: 10.1021/acsnano.4c00217

    61. [61]

      Shao, X.; Li, K.; Li, J.; Cheng, Q.; Wang, G.; Wang, K. Chin. J. Catal. 2023, 51, 193. doi: 10.1016/S1872-2067(23)64478-X  doi: 10.1016/S1872-2067(23)64478-X

    62. [62]

      He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067(23)64420-1  doi: 10.1016/S1872-2067(23)64420-1

    63. [63]

      Wang, K.; Cheng, M.; Xia, F.; Cao, N.; Zhang, F.; Ni, W.; Yue, X.; Yan, K.; He, Y.; Shi, Y.; et al. Small 2023, 19, 2207581. doi: 10.1002/smll.202207581  doi: 10.1002/smll.202207581

    64. [64]

      Wang, B.; Wang, X.; Lu, L.; Zhou, C.; Xin, Z.; Wang, J.; Ke, X.; Sheng, G.; Yan, S.; Zou, Z. ACS Catal. 2018, 8, 516. doi: 10.1021/acscatal.7b02952  doi: 10.1021/acscatal.7b02952

    65. [65]

      Wang, Q.; Jin, Y.; Zhang, Y.; Li, Y.; Wang, X.; Cao, X.; Wang, B. J. Colloid Interface Sci. 2022, 606, 1087. doi: 10.1016/j.jcis.2021.08.116  doi: 10.1016/j.jcis.2021.08.116

    66. [66]

      Meng, K.; Zhang, J.; Cheng, B.; Ren, X.; Xia, Z.; Xu, F.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2406460. doi: 10.1002/adma.202406460  doi: 10.1002/adma.202406460

    67. [67]

      Xu, J.; Ju, Z.; Zhang, W.; Pan, Y.; Zhu, J.; Mao, J.; Zheng, X.; Fu, H.; Yuan, M.; Chen, H.; et al. Angew. Chem. Int. Ed. 2021, 60, 8705. doi: 10.1002/anie.202017041  doi: 10.1002/anie.202017041

    68. [68]

      Heng, J.; Zhu, H.; Zhao, Z.; Yu, C.; Liao, P.; Chen, X. J. Am. Chem. Soc. 2023, 145, 21672. doi: 10.1021/jacs.3c08571  doi: 10.1021/jacs.3c08571

    69. [69]

      Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. J. Am. Chem. Soc. 2020, 142, 9567. doi: 10.1021/jacs.0c02973  doi: 10.1021/jacs.0c02973

    70. [70]

      Wang, L.; Zhang, S.; Zhang, L.; Yu, J. Appl. Catal. B 2024, 355, 124167. doi: 10.1016/j.apcatb.2024.124167  doi: 10.1016/j.apcatb.2024.124167

    71. [71]

      Collins, S.; Baltanas, M.; Bonivardi, A. J. Catal. 2004, 226, 410. doi: 10.1016/j.jcat.2004.06.012  doi: 10.1016/j.jcat.2004.06.012

  • 加载中
    1. [1]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    2. [2]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    3. [3]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    5. [5]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    7. [7]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    8. [8]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    9. [9]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    11. [11]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    12. [12]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    14. [14]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    15. [15]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    16. [16]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    17. [17]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    18. [18]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    19. [19]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    20. [20]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

Metrics
  • PDF Downloads(10)
  • Abstract views(1337)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return