Citation: Kaihui Huang,  Dejun Chen,  Xin Zhang,  Rongchen Shen,  Peng Zhang,  Difa Xu,  Xin Li. Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240702. doi: 10.3866/PKU.WHXB202407020 shu

Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production

  • Corresponding author: Xin Zhang,  Rongchen Shen,  Peng Zhang,  Xin Li, 
  • Received Date: 21 July 2024
    Revised Date: 18 September 2024
    Accepted Date: 19 September 2024

    Fund Project: The project was supported from the National Natural Science Foundation of China (22378148, 21975084, 2230082074) and Natural Science Foundation of Guangdong Province (2024A1515012433).

  • The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research. In this study, we designed and prepared a Covalent Triazine Framework (CTF)-Cu2O@NC composite featuring an S-scheme heterojunction structure aimed at enhancing the photocatalytic hydrogen production. The light absorption capacity, electron-hole separation efficiency and H2-evolution activity of the composite were significantly enhanced due to the synergistic effects of the nitrogen-doped carbon (NC) layer and the S-scheme heterojunction. Structural and photoelectrochemical characterization of the system reveal that the S-scheme heterojunctions not only enhance the separation efficiency of photogenerated carriers but also maintain the strong redox capabilities to further promote the photocatalytic reactions. Moreover, the NC layer could simultaneously reduce the photocorrosion of Cu2O and promote the electron transfer. Experimental results demonstrate that the CTF-7% Cu2O@NC composite shows outstanding hydrogen-production performance under visible light, achieving 15645 μmol∙g-1∙h-1, significantly surpassing the photocatalytic activity of pure CTF (2673 μmol∙g-1∙h-1). This study introduces a novel approach to the development of efficient and innovative photocatalytic materials, strongly supporting the advancement of sustainable hydrogen energy.
  • 加载中
    1. [1]

      (1) Hisatomi, T.; Domen, K. Nat. Catal. 2019, 2, 387. doi:10.1038/s41929-019-0242-6

    2. [2]

      (2)
      Zhang, L. J.; Wu, Y. L.; Li, J. K.; Jin, Z. L.; Li, Y. J.; Tsubaki, N. Mater. Today Phys. 2022, 27, 100767. doi:10.1016/j.mtphys.2022.100767

    3. [3]

      (3) Liu, H.; Zhang, Y. Y.; Li, D. J.; Li, Y. J.; Jin, Z. L. ACS Appl. Energy Mater. 2022, 5, 2474. doi:10.1021/acsaem.1c03967

    4. [4]

      (4) Meng, C.; Huang, M.; Li, Y. Chem. Res. Chin. Univ. 2023, 39, 697. doi:10.1007/s40242-023-3124-z

    5. [5]

      (5) Wu, X.; Tan, L.; Chen, G.; Kang, J.; Wang, G. Sci. China. Mater. 2024, 67, 444. doi:10.1007/s40843-023-2755-2

    6. [6]

      (6) Qian, Y.; Zhang, F.; Kang, D. J.; Pang, H. Energy Environ. Mater. 2023, 6, e12414. doi:10.1002/eem2.12414

    7. [7]

      (7) Wang, P.; Yang, M.; Tang, S. P.; Li, Y. J.; Lin, X.; Zhang, H. Y.; Zhu, Z.; Chen, F. T. J. Alloy. Compd. 2022, 918, 165607. doi:10.1016/j.jallcom.2022.165607

    8. [8]

      (8) Wang, X. P., Li, Y. J., Li, T.; Jin, Z. L. Adv. Sustain. Syst. 2023, 7, 2200139. doi:10.1002/adsu.202200139

    9. [9]

      (9) Fan, K.; Sun, Y.; Xu, P.; Guo, J.; Li, Z.; Shao, M. Chem. Res. Chin. Univ. 2022, 38, 1185. doi:10.1007/s40242-022-2254-z

    10. [10]

      (10) Cai, M.; Wei, Y.; Li, Y.; Li, X.; Wang, S.; Shao, G.; Zhang, P. EcoEnergy 2023, 1, 248. doi:10.1002/ece2.16

    11. [11]

      (11) Shen, R.; Liang, G.; Hao, L.; Zhang, P.; Li, X. Adv. Mater. 2023, 35, 2303649. doi:10.1002/adma.202303649

    12. [12]

      (12) Zheng, C. Y., Jiang, G. P., Li, Y. J.; Jin, Z. L. J. Alloy. Compd. 2022, 904, 164041. doi:10.1016/j.jallcom.2022.164041.

    13. [13]

      (13) Wang, J.; Wang, Z.; Dai, K.; Zhang, J. J. Mater. Sci. Technol. 2023, 165, 187. doi:10.1016/j.jmst.2023.03.067

    14. [14]

      (14) Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi:10.1016/j.chempr.2020.06.010

    15. [15]

      (15) Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys. -Chim. Sin. 2023, 39, 2212016. doi:10.3866/pku.Whxb202212016

    16. [16]

      (16) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi:10.1002/anie.202218688

    17. [17]

      (17) Cai, J.; Liu, B.; Zhang, S.; Wang, L.; Wu, Z.; Zhang, J.; Cheng, B. J. Mater. Sci. Technol. 2024, 197, 183. doi:10.1016/j.jmst.2024.02.012

    18. [18]

      (18) Fan, Z. B.; Guo, X.; Liu, F. J.; Li, Y. J.; Zhang, L. J.; Jin, Z. L. Appl. Mater. Today 2022, 29, 101637. doi:10.1016/j.apmt.2022.101637.

    19. [19]

      (19) Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi:10.1016/j.jmst.2023.03.003

    20. [20]

      (20) He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi:10.1016/S1872-2067(23)64420-1

    21. [21]

      (21) Zhu, Z.; Zhang, H. Y.; Teng, Y.; Lin, X.; Li, M.; Li, Y. J. Surf. Interfaces 2023, 41, 103160. doi:10.1016/j.surfin.2023.103160

    22. [22]

      (22) Dong, Y.; Ji, P.; Xu, X.; Li, R.; Wang, Y.; Homewood, K. P.; Xia, X.; Gao, Y.; Chen, X. Energy Environ. Mater. 2024, 7, e12643. doi:10.1002/eem2.12643

    23. [23]

      (23) Liu, M.; Huang, Q.; Wang, S.; Li, Z.; Li, B.; Jin, S.; Tan, B. Angew. Chem. Int. Ed. 2018, 57, 11968. doi:10.1002/anie.201806664

    24. [24]

      (24) He, J.; Wang, X. D.; Jin, S. B.; Liu, Z. Q.; Zhu, M. S. Chin. J. Catal. 2022, 43, 1306. doi:10.1016/s1872-2067(21)63936-0.

    25. [25]

      (25) Zhang, G.; Li, X.; Chen, D.; Li, N.; Xu, Q.; Li, H.; Lu, J. Adv. Funct. Mater. 2023, 33, 2308553. doi:10.1002/adfm.202308553.

    26. [26]

      (26) Ding, H.; Shen, R.; Huang, K.; Huang, C.; Liang, G.; Zhang, P.; Li, X. Adv. Funct. Mater. 2024, 34, 2400065. doi:10.1002/adfm.202400065.

    27. [27]

      (27) Gao, Z.; Jian, Y.; Yang, S.; Xie, Q. J.; McFadzean, C. J. R.; Wei, B. S.; Tang, J. T.; Yuan, J. Y.; Pan, C. Y.; Yu, G. P. Angew. Chem. Int. Ed. 2023, 135, e202304173. doi:10.1002/anie.202304173.

    28. [28]

      (28) Liu, R.; Zhao, L.; Liu, B.; Yu, J.; Wang, Y.; Yu, W.; Xin, D.; Fang, C.; Jiang, X.; Hu, R.; et al. Chin. J. Struc. Chem. 2024, 43, 100332. doi:10.1016/j.cjsc.2024.100332

    29. [29]

      (29) Zhang, Z. Q.; Wang, H. B.; Li, Y. X.; Xie, M. G.; Li, C. G.; Lu, H. Y.; Peng, Y.; Shi, Z. Chem. Res. Chin. Univ. 2022, 38, 750. doi:10.1007/s40242-022-1504-4

    30. [30]

      (30) Huang, K.; Feng, B.; Wen, X.; Hao, L.; Xu, D.; Liang, G.; Shen, R.; Li, X. Chin. J. Struc. Chem. 2023, 42, 100204. doi:10.1016/j.cjsc.2023.100204

    31. [31]

      (31) Wan, L.; Zhou, Q.; Wang, X.; Wood, T. E.; Wang, L.; Duchesne, P. N.; Guo, J.; Yan, X.; Xia, M.; Li, Y. F.; et al. Nat. Catal. 2019, 2, 889. doi:10.1038/s41929-019-0338-z

    32. [32]

      (32) Han, X.; He, X.; Sun, L.; Han, X.; Zhan, W.; Xu, J.; Wang, X.; Chen, J. ACS Catal. 2018, 8, 3348. doi:10.1021/acscatal.7b04219

    33. [33]

      (33) Liu, L.; Yang, W.; Li, Q.; Gao, S.; Shang, J. K. ACS Appl. Mater. Inter. 2014, 6, 5629. doi:10.1021/am500131b

    34. [34]

      (34) Wang, K.; Yang, L.; Wang, X.; Guo, L.; Cheng, G.; Zhang, C.; Jin, S.; Tan, B.; Cooper, A. Angew. Chem. Int. Ed. 2017, 56, 14149. doi:10.1002/anie.201708548

    35. [35]

      (35) Hao, L.; Ning, J.; Luo, B.; Wang, B.; Zhang, Y.; Tang, Z.; Yang, J.; Thomas, A.; Zhi, L. J. Am. Chem. Soc. 2015, 137, 219. doi:10.1021/ja508693y

    36. [36]

      (36) Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Struc. Chem. 2023, 42, 100202. doi:10.1016/j.cjsc.2023.100202

    37. [37]

      (37) Shen, R.; Li, N.; Qin, C.; Li, X.; Zhang, P.; Li, X.; Tang, J. Adv. Funct. Mater. 2023, 33, 2301463. doi:10.1002/adfm.202301463

    38. [38]

      (38) Zhang, M.; Chen, Z.; Wang, Y.; Zhang, J.; Zheng, X.; Rao, D.; Han, X.; Zhong, C.; Hu, W.; Deng, Y. Appl. Catal. B-Environ. 2019, 246, 202. doi:10.1016/j.apcatb.2019.01.042

    39. [39]

      (39) Hao, L.; Shen, R.; Huang, C.; Liang, Z.; Li, N.; Zhang, P.; Li, X.; Qin, C.; Li, X. Appl. Catal. B-Environ. 2023, 330, 122581. doi:10.1016/j.apcatb.2023.122581

    40. [40]

      (40) Waqas, M. Chem. Res. Chin. Univ. 2024, 40, 529. doi:10.1007/s40242-024-4055-z

    41. [41]

      (41) Shen, R.; He, K.; Zhang, A.; Li, N.; Ng, Y. H.; Zhang, P.; Hu, J.; Li, X. Appl. Catal. B-Environ. 2021, 291, 120104. doi:10.1016/j.apcatb.2021.120104

    42. [42]

      (42) Guo, L.; Gao, J.; Li, M.; Xie, Y.; Chen, H.; Wang, S.; Li, Z.; Wang, X.; Zhou, W. EcoEnergy 2023, 1, 437. doi:10.1002/ece2.20

    43. [43]

      (43) Xu, N.; Liu, Y.; Yang, W.; Tang, J.; Cai, B.; Li, Q.; Sun, J.; Wang, K.; Xu, B.; Zhang, Q. ACS Appl. Energy Mater. 2020, 3, 11939. doi:10.1021/acsaem.0c02102

    44. [44]

      (44) Sun, T.; Liang, Y.; Xu, Y. Angew. Chem. Int. Ed. 2022, 61, e202116875. doi:10.1002/anie.202116875

    45. [45]

      (45) Gao, S.; Zhang, P.; Huang, G.; Chen, Q.; Bi, J.; Wu, L. ChemSusChem 2021, 14, 3850. doi:10.1002/cssc.202101308

    46. [46]

      (46) Xu, Z.; Cui, Y.; Guo, B.; Li, H.-Y.; Li, H.-X. ChemCatChem 2021, 13, 958. doi:10.1002/cctc.202001631

    47. [47]

      (47) Feng, T.; Wang, J.; Gao, S.; Feng, C.; Shang, N.; Wang, C.; Li, X. Appl. Surf. Sci. 2019, 469, 431. doi:10.1016/j.apsusc.2018.11.036

    48. [48]

      (48) Yu, J.; Sun, X.; Xu, X.; Zhang, C.; He, X. Appl. Catal. B-Environ. 2019, 257, 117935. doi:10.1016/j.apcatb.2019.117935

    49. [49]

      (49) Guo, L.; Niu, Y.; Xu, H.; Li, Q.; Razzaque, S.; Huang, Q.; Jin, S.; Tan, B. J. Mater. Chem. A 2018, 6, 19775. doi:10.1039/C8TA07391K

    50. [50]

      (50) Chen, C.; Xiong, Y.; Zhong, X.; Lan, P.; Wei, Z.; Pan, H.; Su, P.; Song, Y.; Chen, Y. F.; Nafady, A.; et al. Angew. Chem. Int. Ed. 2022, 61, e202114071. doi:10.1002/anie.202114071

    51. [51]

      (51) Kuecken, S.; Acharjya, A.; Zhi, L.; Schwarze, M.; Schomäcker, R.; Thomas, A. Chem. Commun. 2017, 53, 5854. doi:10.1039/C7CC01827D

    52. [52]

      (52) Liu, C.; Wang, Y. C.; Yang, Q.; Li, X. Y.; Yi, F.; Liu, K. W.; Cao, H. M.; Wang, C. J.; Yan, H. J. Chem.-A Eur. J. 2021, 27, 13059. doi:10.1002/chem.202101956

    53. [53]

      (53) Lan, Z.; Chi, X.; Wu, M.; Zhang, X.; Chen, X.; Zhang, G.; Wang, X. Small 2022, 18, 2200129. doi:10.1002/smll.202200129

    54. [54]

      (54) Huang, W.; He, Q.; Hu, Y.; Li, Y. Angew. Chem. Int. Ed. 2019, 131, 8768. doi:10.1002/ange.201900046

    55. [55]

      (55) Jiang, Q.; Sun, L.; Bi, J.; Liang, S.; Li, L.; Yu, Y.; Wu, L. ChemSusChem 2018, 11, 1108. doi:10.1002/cssc.201702220

    56. [56]

      (56) Xu, N.; Cai, B.; Li, Q.; Liu, Y.; Tang, J.; Wang, K.; Xu, B.; Fan, Y. J. Alloy. Compd. 2021, 871, 159565. doi:10.1016/j.jallcom.2021.159565

    57. [57]

      (57) Liu, M.; Yang, K.; Li, Z.; Fan, E.; Fu, H.; Zhang, L.; Zhang, Y.; Zheng, Z. Chem. Commun. 2022, 58, 92. doi:10.1039/d1cc05619k

    58. [58]

      (58) Liu, M.; Wang, X.; Liu, J.; Wang, K.; Jin, S.; Tan, B. ACS Appl. Mater. Inter. 2020, 12, 12774. doi:10.1021/acsami.9b21903

    59. [59]

      (59) Zhang, S.; Cheng, G.; Guo, L.; Wang, N.; Tan, B.; Jin, S. Angew. Chem. Int. Edit. 2020, 59, 6007. doi:10.1002/anie.201914424

    60. [60]

      (60) Meier, C. B.; Clowes, R.; Berardo, E.; Jelfs, K. E.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. Chem. Mater. 2019, 31, 8830. doi:10.1021/acs.chemmater.9b02825

    61. [61]

      (61) Li, Y.; Tang, Y.; Li, J.; Chang, Y.; Huang, H.; Zhong, C. J. Mater. Sci. 2021, 56, 5772. doi:10.1007/s10853-020-05637-9

    62. [62]

      (62) Zheng, L.; Wang, D.; Wu, S.; Jiang, X.; Zhang, J.; Xing, Q.; Zou, J.; Luo, S. J. Mater. Chem. A 2020, 8, 25425. doi:10.1039/D0TA10165F

    63. [63]

      (63) Chen, Y.; Huang, G.; Gao, Y.; Chen, Q.; Bi, J. Int. J. Hydrog. Energy 2022, 47, 8739. doi:10.1016/j.ijhydene.2021.12.220

    64. [64]

      (64) Liu, J.; Li, X.; Han, C.; Liu, M.; Li, X.; Sun, J.; Shao, C. Energy Environ. Mater. 2023, 6, e12404. doi:10.1002/eem2.12404

    65. [65]

      (65) Fu, C.; Li, D.; Zhang, J.; Guo, W.; Yang, H.; Zhao, B.; Chen, Z.; Fu, X.; Liang, Z.; Jiang, L. Chem. Res. Chin. Univ. 2023, 39, 891. doi:10.1007/s40242-023-3182-2

    66. [66]

      (66) Zhang, Z.; Xiang, K.; Wang, H.; Li, X.; Zou, J.; Liang, G.; Jiang, J. SusMat 2024, e229. doi:10.1002/sus2.229

    67. [67]

      (67) Li, Y.; Li, Y.; Yang, C.; Gan, L. J. Phys. Chem. C 2023, 127, 17732. doi:10.1021/acs.jpcc.3c04031

    68. [68]

      (68) Wu, Y.; Lv, H.; Wu, X. Chin. J. Struc. Chem. 2024, 100375. doi:10.1016/j.cjsc.2024.100375

    69. [69]

      (69) Yu, K.; He, P.; He, N.; Li, X.; Dong, C.; Jiang, B.; Zou, Y.; Pei, X.; Li, Y.; Ma, L. Sci. China Mater. 2023, 66, 4680. doi:10.1007/s40843-023-2599-9

    70. [70]

      (70) Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi:10.3866/PKU.WHXB202309031

    71. [71]

      (71) He, H.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 34, 2315426. doi:10.1002/adfm.202315426

    72. [72]

      (72) Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi:10.1016/S1872-2067(23)64444-4

    73. [73]

      (73) Yang, T.; Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2024, 58, 157. doi:10.1016/S1872-2067(23)64607-8

    74. [74]

      (74) Zhang, H.; Shao, C.; Wang, Z.; Zhang, J.; Dai, K. J. Mater. Sci. Technol. 2024, 195, 146. doi:10.1016/j.jmst.2023.11.081

    75. [75]

      (75) Xu, Z.; Wu, Y.; Tao, R.; Jin, Z.; Fang, X. Chem. Res. Chin. Univ. 2023, 39, 928. doi:10.1007/s40242-022-2274-8

    76. [76]

      (76) Song, P.; Du, J.; Ma, X.; Shi, Y.; Fang, X.; Liu, D.; Wei, S.; Liu, Z.; Cao, Y.; Lin, B.; et al. EcoEnergy 2023, 1, 197. doi:10.1002/ece2.8

    77. [77]

      (77) Zhan, H.; Zhou, R.; Liu, K.; Ma, Z.; Wang, P.; Zhan, S.; Zhou, Q. Sci. China Mater. 2024, 67, 1740. doi:10.1007/s40843-024-2900-5

    78. [78]

      (78) Zhang, P.; Li, Y.; Zhang, Y.; Hou, R.; Zhang, X.; Xue, C.; Wang, S.; Zhu, B.; Li, N.; Shao, G. Small Methods 2020, 4, 2000214. doi:10.1002/smtd.202000214

  • 加载中
    1. [1]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    2. [2]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    7. [7]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    9. [9]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    17. [17]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(1)
  • Abstract views(61)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return