Citation: Kaihui Huang, Dejun Chen, Xin Zhang, Rongchen Shen, Peng Zhang, Difa Xu, Xin Li. Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240702. doi: 10.3866/PKU.WHXB202407020 shu

Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production

  • Corresponding author: Xin Zhang, xinzhang@hbuas.edu.cn Rongchen Shen, shenrongchenscau@163.com Peng Zhang, zhangp@zzu.edu.cn Xin Li, xinli@scau.edu.cn
  • Received Date: 21 July 2024
    Revised Date: 18 September 2024
    Accepted Date: 19 September 2024
    Available Online: 10 October 2024

    Fund Project: The project was supported from the National Natural Science Foundation of China 22378148The project was supported from the National Natural Science Foundation of China 21975084The project was supported from the National Natural Science Foundation of China 2230082074Natural Science Foundation of Guangdong Province 2024A1515012433

  • The development of efficient photocatalysts for hydrogen production is crucial in sustainable energy research. In this study, we designed and prepared a Covalent Triazine Framework (CTF)-Cu2O@NC composite featuring an S-scheme heterojunction structure aimed at enhancing the photocatalytic hydrogen production. The light absorption capacity, electron-hole separation efficiency and H2-evolution activity of the composite were significantly enhanced due to the synergistic effects of the nitrogen-doped carbon (NC) layer and the S-scheme heterojunction. Structural and photoelectrochemical characterization of the system reveal that the S-scheme heterojunctions not only enhance the separation efficiency of photogenerated carriers but also maintain the strong redox capabilities to further promote the photocatalytic reactions. Moreover, the NC layer could simultaneously reduce the photocorrosion of Cu2O and promote the electron transfer. Experimental results demonstrate that the CTF-7% Cu2O@NC composite shows outstanding hydrogen-production performance under visible light, achieving 15645 μmol∙g−1∙h−1, significantly surpassing the photocatalytic activity of pure CTF (2673 μmol∙g−1∙h−1). This study introduces a novel approach to the development of efficient and innovative photocatalytic materials, strongly supporting the advancement of sustainable hydrogen energy.
  • 加载中
    1. [1]

      Hisatomi, T.; Domen, K. Nat. Catal. 2019, 2, 387. doi: 10.1038/s41929-019-0242-6  doi: 10.1038/s41929-019-0242-6

    2. [2]

      Zhang, L. J.; Wu, Y. L.; Li, J. K.; Jin, Z. L.; Li, Y. J.; Tsubaki, N. Mater. Today Phys. 2022, 27, 100767. doi: 10.1016/j.mtphys.2022.100767  doi: 10.1016/j.mtphys.2022.100767

    3. [3]

      Liu, H.; Zhang, Y. Y.; Li, D. J.; Li, Y. J.; Jin, Z. L. ACS Appl. Energy Mater. 2022, 5, 2474. doi: 10.1021/acsaem.1c03967  doi: 10.1021/acsaem.1c03967

    4. [4]

      Meng, C.; Huang, M.; Li, Y. Chem. Res. Chin. Univ. 2023, 39, 697. doi: 10.1007/s40242-023-3124-z  doi: 10.1007/s40242-023-3124-z

    5. [5]

      Wu, X.; Tan, L.; Chen, G.; Kang, J.; Wang, G. Sci. China. Mater. 2024, 67, 444. doi: 10.1007/s40843-023-2755-2  doi: 10.1007/s40843-023-2755-2

    6. [6]

      Qian, Y.; Zhang, F.; Kang, D. J.; Pang, H. Energy Environ. Mater. 2023, 6, e12414. doi: 10.1002/eem2.12414  doi: 10.1002/eem2.12414

    7. [7]

      Wang, P.; Yang, M.; Tang, S. P.; Li, Y. J.; Lin, X.; Zhang, H. Y.; Zhu, Z.; Chen, F. T. J. Alloy. Compd. 2022, 918, 165607. doi: 10.1016/j.jallcom.2022.165607  doi: 10.1016/j.jallcom.2022.165607

    8. [8]

      Wang, X. P., Li, Y. J., Li, T.; Jin, Z. L. Adv. Sustain. Syst. 2023, 7, 2200139. doi: 10.1002/adsu.202200139  doi: 10.1002/adsu.202200139

    9. [9]

      Fan, K.; Sun, Y.; Xu, P.; Guo, J.; Li, Z.; Shao, M. Chem. Res. Chin. Univ. 2022, 38, 1185. doi: 10.1007/s40242-022-2254-z  doi: 10.1007/s40242-022-2254-z

    10. [10]

      Cai, M.; Wei, Y.; Li, Y.; Li, X.; Wang, S.; Shao, G.; Zhang, P. EcoEnergy 2023, 1, 248. doi: 10.1002/ece2.16  doi: 10.1002/ece2.16

    11. [11]

      Shen, R.; Liang, G.; Hao, L.; Zhang, P.; Li, X. Adv. Mater. 2023, 35, 2303649. doi: 10.1002/adma.202303649  doi: 10.1002/adma.202303649

    12. [12]

      Zheng, C. Y., Jiang, G. P., Li, Y. J.; Jin, Z. L. J. Alloy. Compd. 2022, 904, 164041. doi: 10.1016/j.jallcom.2022.164041.  doi: 10.1016/j.jallcom.2022.164041

    13. [13]

      Wang, J.; Wang, Z.; Dai, K.; Zhang, J. J. Mater. Sci. Technol. 2023, 165, 187. doi: 10.1016/j.jmst.2023.03.067  doi: 10.1016/j.jmst.2023.03.067

    14. [14]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    15. [15]

      Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys. -Chim. Sin. 2023, 39, 2212016. doi: 10.3866/pku.Whxb202212016  doi: 10.3866/pku.Whxb202212016

    16. [16]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688  doi: 10.1002/anie.202218688

    17. [17]

      Cai, J.; Liu, B.; Zhang, S.; Wang, L.; Wu, Z.; Zhang, J.; Cheng, B. J. Mater. Sci. Technol. 2024, 197, 183. doi: 10.1016/j.jmst.2024.02.012  doi: 10.1016/j.jmst.2024.02.012

    18. [18]

      Fan, Z. B.; Guo, X.; Liu, F. J.; Li, Y. J.; Zhang, L. J.; Jin, Z. L. Appl. Mater. Today 2022, 29, 101637. doi: 10.1016/j.apmt.2022.101637.  doi: 10.1016/j.apmt.2022.101637

    19. [19]

      Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003  doi: 10.1016/j.jmst.2023.03.003

    20. [20]

      He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067(23)64420-1  doi: 10.1016/S1872-2067(23)64420-1

    21. [21]

      Zhu, Z.; Zhang, H. Y.; Teng, Y.; Lin, X.; Li, M.; Li, Y. J. Surf. Interfaces 2023, 41, 103160. doi: 10.1016/j.surfin.2023.103160  doi: 10.1016/j.surfin.2023.103160

    22. [22]

      Dong, Y.; Ji, P.; Xu, X.; Li, R.; Wang, Y.; Homewood, K. P.; Xia, X.; Gao, Y.; Chen, X. Energy Environ. Mater. 2024, 7, e12643. doi: 10.1002/eem2.12643  doi: 10.1002/eem2.12643

    23. [23]

      Liu, M.; Huang, Q.; Wang, S.; Li, Z.; Li, B.; Jin, S.; Tan, B. Angew. Chem. Int. Ed. 2018, 57, 11968. doi: 10.1002/anie.201806664  doi: 10.1002/anie.201806664

    24. [24]

      He, J.; Wang, X. D.; Jin, S. B.; Liu, Z. Q.; Zhu, M. S. Chin. J. Catal. 2022, 43, 1306. doi: 10.1016/s1872-2067(21)63936-0.  doi: 10.1016/s1872-2067(21)63936-0

    25. [25]

      Zhang, G.; Li, X.; Chen, D.; Li, N.; Xu, Q.; Li, H.; Lu, J. Adv. Funct. Mater. 2023, 33, 2308553. doi: 10.1002/adfm.202308553.  doi: 10.1002/adfm.202308553

    26. [26]

      Ding, H.; Shen, R.; Huang, K.; Huang, C.; Liang, G.; Zhang, P.; Li, X. Adv. Funct. Mater. 2024, 34, 2400065. doi: 10.1002/adfm.202400065.  doi: 10.1002/adfm.202400065

    27. [27]

      Gao, Z.; Jian, Y.; Yang, S.; Xie, Q. J.; McFadzean, C. J. R.; Wei, B. S.; Tang, J. T.; Yuan, J. Y.; Pan, C. Y.; Yu, G. P. Angew. Chem. Int. Ed. 2023, 135, e202304173. doi: 10.1002/anie.202304173.  doi: 10.1002/anie.202304173

    28. [28]

      Liu, R.; Zhao, L.; Liu, B.; Yu, J.; Wang, Y.; Yu, W.; Xin, D.; Fang, C.; Jiang, X.; Hu, R.; et al. Chin. J. Struc. Chem. 2024, 43, 100332. doi: 10.1016/j.cjsc.2024.100332  doi: 10.1016/j.cjsc.2024.100332

    29. [29]

      Zhang, Z. Q.; Wang, H. B.; Li, Y. X.; Xie, M. G.; Li, C. G.; Lu, H. Y.; Peng, Y.; Shi, Z. Chem. Res. Chin. Univ. 2022, 38, 750. doi: 10.1007/s40242-022-1504-4  doi: 10.1007/s40242-022-1504-4

    30. [30]

      Huang, K.; Feng, B.; Wen, X.; Hao, L.; Xu, D.; Liang, G.; Shen, R.; Li, X. Chin. J. Struc. Chem. 2023, 42, 100204. doi: 10.1016/j.cjsc.2023.100204  doi: 10.1016/j.cjsc.2023.100204

    31. [31]

      Wan, L.; Zhou, Q.; Wang, X.; Wood, T. E.; Wang, L.; Duchesne, P. N.; Guo, J.; Yan, X.; Xia, M.; Li, Y. F.; et al. Nat. Catal. 2019, 2, 889. doi: 10.1038/s41929-019-0338-z  doi: 10.1038/s41929-019-0338-z

    32. [32]

      Han, X.; He, X.; Sun, L.; Han, X.; Zhan, W.; Xu, J.; Wang, X.; Chen, J. ACS Catal. 2018, 8, 3348. doi: 10.1021/acscatal.7b04219  doi: 10.1021/acscatal.7b04219

    33. [33]

      Liu, L.; Yang, W.; Li, Q.; Gao, S.; Shang, J. K. ACS Appl. Mater. Inter. 2014, 6, 5629. doi: 10.1021/am500131b  doi: 10.1021/am500131b

    34. [34]

      Wang, K.; Yang, L.; Wang, X.; Guo, L.; Cheng, G.; Zhang, C.; Jin, S.; Tan, B.; Cooper, A. Angew. Chem. Int. Ed. 2017, 56, 14149. doi: 10.1002/anie.201708548  doi: 10.1002/anie.201708548

    35. [35]

      Hao, L.; Ning, J.; Luo, B.; Wang, B.; Zhang, Y.; Tang, Z.; Yang, J.; Thomas, A.; Zhi, L. J. Am. Chem. Soc. 2015, 137, 219. doi: 10.1021/ja508693y  doi: 10.1021/ja508693y

    36. [36]

      Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Struc. Chem. 2023, 42, 100202. doi: 10.1016/j.cjsc.2023.100202  doi: 10.1016/j.cjsc.2023.100202

    37. [37]

      Shen, R.; Li, N.; Qin, C.; Li, X.; Zhang, P.; Li, X.; Tang, J. Adv. Funct. Mater. 2023, 33, 2301463. doi: 10.1002/adfm.202301463  doi: 10.1002/adfm.202301463

    38. [38]

      Zhang, M.; Chen, Z.; Wang, Y.; Zhang, J.; Zheng, X.; Rao, D.; Han, X.; Zhong, C.; Hu, W.; Deng, Y. Appl. Catal. B-Environ. 2019, 246, 202. doi: 10.1016/j.apcatb.2019.01.042  doi: 10.1016/j.apcatb.2019.01.042

    39. [39]

      Hao, L.; Shen, R.; Huang, C.; Liang, Z.; Li, N.; Zhang, P.; Li, X.; Qin, C.; Li, X. Appl. Catal. B-Environ. 2023, 330, 122581. doi: 10.1016/j.apcatb.2023.122581  doi: 10.1016/j.apcatb.2023.122581

    40. [40]

      Waqas, M. Chem. Res. Chin. Univ. 2024, 40, 529. doi: 10.1007/s40242-024-4055-z  doi: 10.1007/s40242-024-4055-z

    41. [41]

      Shen, R.; He, K.; Zhang, A.; Li, N.; Ng, Y. H.; Zhang, P.; Hu, J.; Li, X. Appl. Catal. B-Environ. 2021, 291, 120104. doi: 10.1016/j.apcatb.2021.120104  doi: 10.1016/j.apcatb.2021.120104

    42. [42]

      Guo, L.; Gao, J.; Li, M.; Xie, Y.; Chen, H.; Wang, S.; Li, Z.; Wang, X.; Zhou, W. EcoEnergy 2023, 1, 437. doi: 10.1002/ece2.20  doi: 10.1002/ece2.20

    43. [43]

      Xu, N.; Liu, Y.; Yang, W.; Tang, J.; Cai, B.; Li, Q.; Sun, J.; Wang, K.; Xu, B.; Zhang, Q. ACS Appl. Energy Mater. 2020, 3, 11939. doi: 10.1021/acsaem.0c02102  doi: 10.1021/acsaem.0c02102

    44. [44]

      Sun, T.; Liang, Y.; Xu, Y. Angew. Chem. Int. Ed. 2022, 61, e202116875. doi: 10.1002/anie.202116875  doi: 10.1002/anie.202116875

    45. [45]

      Gao, S.; Zhang, P.; Huang, G.; Chen, Q.; Bi, J.; Wu, L. ChemSusChem 2021, 14, 3850. doi: 10.1002/cssc.202101308  doi: 10.1002/cssc.202101308

    46. [46]

      Xu, Z.; Cui, Y.; Guo, B.; Li, H. -Y.; Li, H. -X. ChemCatChem 2021, 13, 958. doi: 10.1002/cctc.202001631  doi: 10.1002/cctc.202001631

    47. [47]

      Feng, T.; Wang, J.; Gao, S.; Feng, C.; Shang, N.; Wang, C.; Li, X. Appl. Surf. Sci. 2019, 469, 431. doi: 10.1016/j.apsusc.2018.11.036  doi: 10.1016/j.apsusc.2018.11.036

    48. [48]

      Yu, J.; Sun, X.; Xu, X.; Zhang, C.; He, X. Appl. Catal. B-Environ. 2019, 257, 117935. doi: 10.1016/j.apcatb.2019.117935  doi: 10.1016/j.apcatb.2019.117935

    49. [49]

      Guo, L.; Niu, Y.; Xu, H.; Li, Q.; Razzaque, S.; Huang, Q.; Jin, S.; Tan, B. J. Mater. Chem. A 2018, 6, 19775. doi: 10.1039/C8TA07391K  doi: 10.1039/C8TA07391K

    50. [50]

      Chen, C.; Xiong, Y.; Zhong, X.; Lan, P.; Wei, Z.; Pan, H.; Su, P.; Song, Y.; Chen, Y. F.; Nafady, A.; et al. Angew. Chem. Int. Ed. 2022, 61, e202114071. doi: 10.1002/anie.202114071  doi: 10.1002/anie.202114071

    51. [51]

      Kuecken, S.; Acharjya, A.; Zhi, L.; Schwarze, M.; Schomäcker, R.; Thomas, A. Chem. Commun. 2017, 53, 5854. doi: 10.1039/C7CC01827D  doi: 10.1039/C7CC01827D

    52. [52]

      Liu, C.; Wang, Y. C.; Yang, Q.; Li, X. Y.; Yi, F.; Liu, K. W.; Cao, H. M.; Wang, C. J.; Yan, H. J. Chem. -A Eur. J. 2021, 27, 13059. doi: 10.1002/chem.202101956  doi: 10.1002/chem.202101956

    53. [53]

      Lan, Z.; Chi, X.; Wu, M.; Zhang, X.; Chen, X.; Zhang, G.; Wang, X. Small 2022, 18, 2200129. doi: 10.1002/smll.202200129  doi: 10.1002/smll.202200129

    54. [54]

      Huang, W.; He, Q.; Hu, Y.; Li, Y. Angew. Chem. Int. Ed. 2019, 131, 8768. doi: 10.1002/ange.201900046  doi: 10.1002/ange.201900046

    55. [55]

      Jiang, Q.; Sun, L.; Bi, J.; Liang, S.; Li, L.; Yu, Y.; Wu, L. ChemSusChem 2018, 11, 1108. doi: 10.1002/cssc.201702220  doi: 10.1002/cssc.201702220

    56. [56]

      Xu, N.; Cai, B.; Li, Q.; Liu, Y.; Tang, J.; Wang, K.; Xu, B.; Fan, Y. J. Alloy. Compd. 2021, 871, 159565. doi: 10.1016/j.jallcom.2021.159565  doi: 10.1016/j.jallcom.2021.159565

    57. [57]

      Liu, M.; Yang, K.; Li, Z.; Fan, E.; Fu, H.; Zhang, L.; Zhang, Y.; Zheng, Z. Chem. Commun. 2022, 58, 92. doi: 10.1039/d1cc05619k  doi: 10.1039/d1cc05619k

    58. [58]

      Liu, M.; Wang, X.; Liu, J.; Wang, K.; Jin, S.; Tan, B. ACS Appl. Mater. Inter. 2020, 12, 12774. doi: 10.1021/acsami.9b21903  doi: 10.1021/acsami.9b21903

    59. [59]

      Zhang, S.; Cheng, G.; Guo, L.; Wang, N.; Tan, B.; Jin, S. Angew. Chem. Int. Edit. 2020, 59, 6007. doi: 10.1002/anie.201914424  doi: 10.1002/anie.201914424

    60. [60]

      Meier, C. B.; Clowes, R.; Berardo, E.; Jelfs, K. E.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. Chem. Mater. 2019, 31, 8830. doi: 10.1021/acs.chemmater.9b02825  doi: 10.1021/acs.chemmater.9b02825

    61. [61]

      Li, Y.; Tang, Y.; Li, J.; Chang, Y.; Huang, H.; Zhong, C. J. Mater. Sci. 2021, 56, 5772. doi: 10.1007/s10853-020-05637-9  doi: 10.1007/s10853-020-05637-9

    62. [62]

      Zheng, L.; Wang, D.; Wu, S.; Jiang, X.; Zhang, J.; Xing, Q.; Zou, J.; Luo, S. J. Mater. Chem. A 2020, 8, 25425. doi: 10.1039/D0TA10165F  doi: 10.1039/D0TA10165F

    63. [63]

      Chen, Y.; Huang, G.; Gao, Y.; Chen, Q.; Bi, J. Int. J. Hydrog. Energy 2022, 47, 8739. doi: 10.1016/j.ijhydene.2021.12.220  doi: 10.1016/j.ijhydene.2021.12.220

    64. [64]

      Liu, J.; Li, X.; Han, C.; Liu, M.; Li, X.; Sun, J.; Shao, C. Energy Environ. Mater. 2023, 6, e12404. doi: 10.1002/eem2.12404  doi: 10.1002/eem2.12404

    65. [65]

      Fu, C.; Li, D.; Zhang, J.; Guo, W.; Yang, H.; Zhao, B.; Chen, Z.; Fu, X.; Liang, Z.; Jiang, L. Chem. Res. Chin. Univ. 2023, 39, 891. doi: 10.1007/s40242-023-3182-2  doi: 10.1007/s40242-023-3182-2

    66. [66]

      Zhang, Z.; Xiang, K.; Wang, H.; Li, X.; Zou, J.; Liang, G.; Jiang, J. SusMat 2024, e229. doi: 10.1002/sus2.229  doi: 10.1002/sus2.229

    67. [67]

      Li, Y.; Li, Y.; Yang, C.; Gan, L. J. Phys. Chem. C 2023, 127, 17732. doi: 10.1021/acs.jpcc.3c04031  doi: 10.1021/acs.jpcc.3c04031

    68. [68]

      Wu, Y.; Lv, H.; Wu, X. Chin. J. Struc. Chem. 2024, 100375. doi: 10.1016/j.cjsc.2024.100375  doi: 10.1016/j.cjsc.2024.100375

    69. [69]

      Yu, K.; He, P.; He, N.; Li, X.; Dong, C.; Jiang, B.; Zou, Y.; Pei, X.; Li, Y.; Ma, L. Sci. China. Mater. 2023, 66, 4680. doi: 10.1007/s40843-023-2599-9  doi: 10.1007/s40843-023-2599-9

    70. [70]

      Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi: 10.3866/PKU.WHXB202309031  doi: 10.3866/PKU.WHXB202309031

    71. [71]

      He, H.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 34, 2315426. doi: 10.1002/adfm.202315426  doi: 10.1002/adfm.202315426

    72. [72]

      Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi: 10.1016/S1872-2067(23)64444-4  doi: 10.1016/S1872-2067(23)64444-4

    73. [73]

      Yang, T.; Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2024, 58, 157. doi: 10.1016/S1872-2067(23)64607-8  doi: 10.1016/S1872-2067(23)64607-8

    74. [74]

      Zhang, H.; Shao, C.; Wang, Z.; Zhang, J.; Dai, K. J. Mater. Sci. Technol. 2024, 195, 146. doi: 10.1016/j.jmst.2023.11.081  doi: 10.1016/j.jmst.2023.11.081

    75. [75]

      Xu, Z.; Wu, Y.; Tao, R.; Jin, Z.; Fang, X. Chem. Res. Chin. Univ. 2023, 39, 928. doi: 10.1007/s40242-022-2274-8  doi: 10.1007/s40242-022-2274-8

    76. [76]

      Song, P.; Du, J.; Ma, X.; Shi, Y.; Fang, X.; Liu, D.; Wei, S.; Liu, Z.; Cao, Y.; Lin, B.; et al. EcoEnergy 2023, 1, 197. doi: 10.1002/ece2.8  doi: 10.1002/ece2.8

    77. [77]

      Zhan, H.; Zhou, R.; Liu, K.; Ma, Z.; Wang, P.; Zhan, S.; Zhou, Q. Sci. China. Mater. 2024, 67, 1740. doi: 10.1007/s40843-024-2900-5  doi: 10.1007/s40843-024-2900-5

    78. [78]

      Zhang, P.; Li, Y.; Zhang, Y.; Hou, R.; Zhang, X.; Xue, C.; Wang, S.; Zhu, B.; Li, N.; Shao, G. Small Methods 2020, 4, 2000214. doi: 10.1002/smtd.202000214  doi: 10.1002/smtd.202000214

  • 加载中
    1. [1]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    2. [2]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    5. [5]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    7. [7]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    8. [8]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    9. [9]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    10. [10]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    11. [11]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    12. [12]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    14. [14]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    15. [15]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    16. [16]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    17. [17]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    18. [18]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(10)
  • Abstract views(1236)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return