Citation:
Xiaofeng Zhu, Bingbing Xiao, Jiaxin Su, Shuai Wang, Qingran Zhang, Jun Wang. Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides[J]. Acta Physico-Chimica Sinica,
;2024, 40(12): 240700.
doi:
10.3866/PKU.WHXB202407005
-
Electrochemical oxygen reduction reaction via the two-electron pathway (2e-ORR) is becoming a promising and sustainable approach to producing hydrogen peroxide (H2O2) without significant carbon footprints. To achieve better performance, most of the recent progress and investigations have focused on developing novel carbon-based electrocatalysts. Nevertheless, the sophisticated preparations, decreased selectivity and undefined active sites of carbon-based catalysts have been generally acknowledged and criticized. To this end, transition metal oxides and chalcogenides have increasingly emerged for 2e-ORR, due to their catalytic stability and tunable microstructure. Here, the development of metal oxides and chalcogenides for O2-to-H2O2 conversion is prospectively reviewed. By summarizing previous theoretical and experimental efforts, their diversity and outstanding catalytic activity are firstly provided. Meanwhile, the topological and chemical factors influencing 2e-ORR selectivity of the metal oxides/chalcogenides are systematically elucidated, including morphology, phase structures, doping and defects engineering. Thus, emphasizing the influence on the binding of ORR intermediates, the active sites and the underlying mechanism is highlighted. Finally, future opportunities and challenges in designing metal oxides/chalcogenides-based catalysts for H2O2 electro-synthesis are outlined. The present review provides insights and fundamentals of metal oxides/chalcogenides as 2e-ORR catalysts, promoting their practical application in the energy-related industry.
-
-
-
[1]
(1) Hu, X.; Sun, Z.; Mei, G.; Zhao, X.; Xia, B. Y.; You, B. Adv. Energy Mater. 2022, 12 (32), 2201466. doi:10.1002/aenm.202201466
-
[2]
(2) Yu, F.-Y.; Zhou, Y.-J.; Tan, H.-Q.; Li, Y.-G.; Kang, Z.-H. Adv. Energy Mater. 2023, 13 (14), 2300119. doi:10.1002/aenm.202300119
-
[3]
(3) Xie, Y.; Zhang, Q.; Sun, H.; Teng, Z; Su, C. Acta Phys. -Chim. Sin. 2023, 39 (11), 2301001. doi:10.3866/PKU.WHXB202301001
-
[4]
(4) Lin, L.; Sun, Z.; Chen, H.; Zhao, L.; Sun, M.; Yang, Y.; Liao, Z.; Wu, X.; Li, X.; Tang, C. Acta Phys. -Chim. Sin. 2023, 40 (4), 2305019. doi:10.3866/PKU.WHXB202305019
-
[5]
(5) Knotter, D. M. The Chemistry of Wet Cleaning. In Handbook of Cleaning in Semiconductor Manufacturing; Reinhardt, K. A., Reidy R. F., Eds.; Scrivener: Beverly, USA, 2010; pp. 39–94. doi:10.1002/9781118071748.ch2
-
[6]
(6) Yuan, M.; Li, D.; Zhao, X.; Ma, W; Kong, K; Ni, W; Gu, Q; Hou, Z. Acta Phys. -Chim. Sin. 2018, 34 (8), 886. doi:10.3866/PKU.WHXB201711151
-
[7]
(7) Du, K.-S.; Huang, J.-M. Green Chem. 2018, 20 (6), 1405. doi:10.1039/C7GC03864J
-
[8]
(8) Dan, M.; Zhong, R.; Hu, S.; Wu, H.; Zhou, Y.; Liu, Z-Q. Chem. Catal. 2022, 2 (8), 1919. doi:10.1016/j.checat.2022.06.002
-
[9]
(9) Lu, X.; Wang, D.; Wu, K.-H.; Guo, X.; Qi, W. J. Colloid Interface Sci. 2020, 573, 376. doi:10.1016/j.jcis.2020.04.030
-
[10]
(10) Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Angew. Chem. Int. Ed. 2006, 45 (42), 6962. doi:10.1002/anie.200503779
-
[11]
(11) Xia, C.; Kim, J. Y.; Wang, H. Nat. Catal. 2020, 3 (8), 605. doi:10.1038/s41929-020-0486-1
-
[12]
(12) Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L,; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. ACS Catal. 2018, 8 (5), 4064. doi:10.1021/acscatal.8b00217
-
[13]
(13) Samanta, C. Appl. Catal., A 2008, 350 (2), 133. doi:10.1016/j.apcata.2008.07.043
-
[14]
(14) Lin, Z.; Zhang, Q.; Pan, J.; Tsounis, C.; Esmailpour, A. A.; Xi, S.; Yang, H. Y.; Han, Z.; Yun, J.; Amal, R.; et al. Energy Environ. Sci. 2022, 15 (3), 1172. doi:10.1039/D1EE02884G
-
[15]
(15) Li, Hc.; Wan, Q.; Du, C.; Zhao, J.; Li, F.; Zhang, Y.; Zheng, Y.; Chen, M.; Zhang, K. H. L.; Huang, J.; et al. Nat. Commun. 2022, 13 (1), 6072. doi:10.1038/s41467-022-33757-0
-
[16]
(16) Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys. -Chim. Sin. 2023, 39 (6), 2212010. doi:10.3866/PKU.WHXB202212010
-
[17]
(17) Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39 (6), 2209016. doi:10.3866/PKU.WHXB202209016
-
[18]
(18) Wu, Y.; Yang, Y.; Gu, M.; Bie, C.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 53, 123. doi:10.1016/S1872-2067(23)64514-0
-
[19]
(19) Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat. Commun. 2024, 15 (1), 3212. doi:10.1038/s41467-024-47624-7
-
[20]
(20) Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat. Commun. 2024, 15 (1), 1313. doi:10.1038/s41467-024-45604-5
-
[21]
(21) Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36 (24), 2400288. doi:10.1002/adma.202400288
-
[22]
(22) Zhang, Y.; Zhou, W.; Tang, Y.; Guo, Y.; Geng, Z.; Liu, L.; Tan, X.; Wang, H.; Yu, T.; Ye, J. Appl. Catal., B 2022, 305 (15), 121055. doi:10.1016/j.apcatb.2021.121036
-
[23]
(23) Sa, Y. J.; Kim, J. H.; Joo, S. H. Angew. Chem. Int. Ed. 2018, 58 (4), 1100. doi:10.1002/anie.201812435
-
[24]
(24) Ouyang, D.; Gao, D.; Qiang, Y.; Zhao, X. Appl. Catal. B 2023, 328 (5), 122491. doi:10.1016/j.apcatb.2023.122491
-
[25]
(25) Jeong, S. W.; Wang, N.; Kitano, S.; Habazaki, H.; Aoki,Y. Adv. Energy Mater. 2021, 11 (37), 2102025. doi:10.1002/aenm.202102025
-
[26]
(26) Zhang, Q.; Chen, Y.; Pan, J.; Daiyan, R.; Lovell, E.C.; Yun, J.; Amal, R.; Lu, X. Small 2023, 19 (40), 2302338. doi:10.1002/smll.202302338
-
[27]
(27) Zhang, J.; Zhang, G.; Jin, S.; Zhou, Y.; Ji, Q.; Lan, H.; Liu, H.; Qu, J. Carbon 2020, 163 (15), 154. doi:10.1016/j.carbon.2020.02.084
-
[28]
(28) Jia, N.; Yang, T.; Shi, S.; Chen, X.; An, Z.; Chen, Y.; Yin, S.; Chen, P. ACS Sustain. Chem. Eng. 2020, 8 (7), 2883. doi:10.1021/acssuschemeng.9b07047
-
[29]
(29) Wu, Q.; Zou, H.; Mao, X.; He, J.; Shi, Y.; Chen, S.; Yan, X.; Wu, L.; Lang, C.; Zhang, B.; et al. Nat. Commun. 2023, 14 (1), 6275. doi:10.1038/s41467-023-41947-7
-
[30]
(30) Zhang, C.; Shen, W.; Guo, K.; Xiong, M.; Zhang, J.; Lu, X. J. Am. Chem. Soc. 2023, 145 (21), 11589. doi:10.1021/jacs.3c00689
-
[31]
(31) Wu, K.-H.; Wang, D.; Lu, X.; Zhang, X.; Xie, Z.; Liu, Y.; Su, B.-J.; Chen, J.-M.; Su, D.-S.; Qi, W.; et al. Chem 2020, 6 (6), 1443. doi:10.1016/j.chempr.2020.04.002
-
[32]
(32) Su, J.; Xiao, B.; Wang, J.; Zhu, X. Sci. Energy Environ. 2024, 1, 4. doi:10.53941/see.2024.100004
-
[33]
(33) Liu, H.; Meng, G.; Deng, Z.; Li, M.; Chang, J.; Dai, T.; Fang, X. Acta Phys. -Chim. Sin. 2022, 38 (5), 2008018. doi:10.3866/PKU.WHXB202008018
-
[34]
(34) Yang, S.; Xu, Y.; Hao, Z.; Qin, S.; Zhang, R.; Han, Y.; Du, L.; Zhu, Z.; Du, A.; Chen, X.; et al. Acta Phys. -Chim. Sin. 2023, 39 (5), 2211025. doi:10.3866/PKU.WHXB202211025
-
[35]
(35) Li, Q.; Meng, J.; Li, Z. J. Mater. Chem. A 2022, 10 (15), 8107. doi:10.1039/D2TA00075J
-
[36]
(36) Zhao, C.-X.; Liu, J.-N.; Li, B.-Q.; Ren, D.; Chen, X.; Yu, J.; Zhang, Q. Adv. Funct. Mater. 2020, 30 (36), 2003619. doi:10.1002/adfm.202003619
-
[37]
(37) Wu, W.; Yan, Y.; Wang, X.; Wei, C.; Yang; Xu, T.; Li, X. J. Mater. Chem. A 2024, 12 (23), 13818. doi:10.1039/D4TA01430H
-
[38]
(38) Shi, X.; Wang, H.; Ji, S.; Linkov, V.; Liu, F.; Wang, R. Chem. Eng. J. 2019, 364 (15), 320. doi:10.1016/j.cej.2019.01.156
-
[39]
(39) Kuang, P.; Ni, Z.; Zhu, B.; Lin, Y.; Yu, J. Adv. Mater. 2023, 35 (41), 2303030. doi:10.1002/adma.202303030
-
[40]
(40) Lv, J.; Xie, J.; Mohamed, A. G. A.; Zhang, X.; Wang, Y. Chem. Soc. Rev. 2022, 51 (4), 1511. doi:10.1039/D1CS00859E
-
[41]
(41) Yu, Y.; Rao, P.; Feng, S.; Chen, M.; Deng, P.; Li, J.; Miao, Z.; Kang, Z.; Shen, Y.; Tian, X. Acta Phys. -Chim. Sin. 2023, 39 (8), 2210039. doi:10.3866/PKU.WHXB202210039
-
[42]
(42) Wang, N.; Ma, S.; Zuo, P.; Duan, J.; Hou, B. Adv. Sci. 2021, 8 (15), 2100076. doi:10.1002/advs.202100076
-
[43]
(43) Han, N.; Zhang, W.; Guo, W.; Pan, H.; Jiang, B.; Xing, L.; Tian, H.; Wang, G.; Zhang, X.; Fransaer, J. Nano Micro Lett. 2023, 15 (1), 185. doi:10.1007/s40820-023-01152-z
-
[44]
(44) Alonso-Vante, N. Transition Metal Chalcogenides for Oxygen Reduction. In Electrocatalysis in Fuel Cells: A Non- and Low- Platinum Approach; Shao, M., Ed.; Springer: London, UK, 2013; pp. 417–436. doi:10.1007/978-1-4471-4911-8_14
-
[45]
(45) Li, H.; Kelly, S.; Guevarra, D.; Wang, Z.; Wang, Y.; Haber, J. A.; Anand, M.; Gunasooriya, G. T. K. K.; Abraham, C. S.; Vijay, S.; et al. Nat. Catal. 2021, 4 (6), 463. doi:10.1038/s41929-021-00618-w
-
[46]
(46) Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. Chem. Soc. Rev. 2020, 49 (7), 2215. doi:10.1039/C9CS00869A
-
[47]
(47) Tian, Y.; Deng, D.; Xu, L.; Li, M.; Chen, H.; Wu, Z.; Zhang, S. Nano Micro Lett. 2023, 15 (1), 122. doi:10.1007/s40820-023-01067-9
-
[48]
(48) Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M. Chem. Rev. 2018, 118 (5), 2340. doi:10.1021/acs.chemrev.7b00542
-
[49]
(49) Zhou, R.; Zheng, Y.; Jaroniec, M.; Qiao, S.-Z. ACS Catal. 2016, 6 (7), 4720. doi:10.1021/acscatal.6b01581
-
[50]
(50) Lu, H.; Li, X.; Monny, S. A.; Wang, Z.; Wang, L. Chin. J. Catal. 2022, 43 (5), 1204. doi:10.1016/S1872-2067(21)64028-7
-
[51]
(51) Wu, T.; Ren, X.; Sun, Y.; Sun, S.; Xian, G.; Scherer, G. G.; Fisher, A. C.; Mandler, D.; Ager, J. W.; Grimaud, A.; et al. Nat. Commun. 2021, 12 (1), 3634. doi:10.1038/s41467-021-23896-1
-
[52]
(52) Zhang, T.; Ren, X.; Ma, F.; Jiang, X.; Wen, Y.; He, W.; Hao, L.; Zeng, C.; Liu, H.; Chen, R.; et al. Appl. Mater. Today 2023, 34, 101912. doi:10.1016/j.apmt.2023.101912
-
[53]
(53) Wu, Z.; Wang, T.; Zou, J.-J.; Li, Y.; Zhang, C. ACS Catal. 2022, 12 (10), 5911. doi:10.1021/acscatal.2c01829
-
[54]
(54) Yan, L.; Cheng, X.; Wang, Y.; Wang, Z.; Zheng, L.; Yan, Y.; Lu, Y.; Sun, S.; Qiu, W.; Chen, G. Mater. Today Energy 2022, 24, 100931. doi:10.1016/j.mtener.2021.100931
-
[55]
(55) Wu, J.; Han, Y.; Bai, Y.; Wang, X.; Zhou, Y.; Zhu, W.; He, T.; Wang, Y.; Huang, H.; Liu, Y.; et al. Adv. Funct. Mater. 2022, 32 (32), 2203647. doi:10.1002/adfm.202203647
-
[56]
(56) Aveiro, L. R.; da Silva, A. G. M.; Antonin, V. S.; Candido, E. G.; Parreira, L. S.; Geonmonond, R. S.; de Freitas, I. C.; Lanza, M. R. V.; Camargo, P. H. C.; Santos, M. C. Electrochim. Acta 2018, 268, 101. doi:10.1016/j.electacta.2018.02.077
-
[57]
(57) Li, J.; Wang, N.; Liu, K.; Duan, J.; Hou, B. Colloids Surf. A 2023, 668, 131446. doi:10.1016/j.colsurfa.2023.131446
-
[58]
(58) Kumar, S.; Fu, Y.-P. Electrochim. Acta 2023, 447, 142161. doi:10.1016/j.electacta.2023.142161
-
[59]
(59) Zhang, H.; An, Y.; Li, S.; Li, Z.; Geng, D.; Sha, D.; Pan, L.; Qiu, G.; Yan, C. Electrochim. Acta 2023, 463, 142047. doi:10.1016/j.electacta.2023.142852
-
[60]
(60) Ding, L.; Zhao, J.; Bao, Z.; Zhang, S.; Shi, H.; Liu, J.; Wang, G.; Peng, X.; Zhong, X.; Wang, J. J. Mater. Chem. A 2023, 11 (7), 3454. doi:10.1039/D2TA09450A
-
[61]
(61) Zhang, S.; Feng, G.; Bao, Z.; Peng, X.; Jiang, C.; Shao, Y.; Wang, S.; Wang, J. Indus. Eng. Chem. Res. 2023, 62 (15), 6113. doi:10.1021/acs.iecr.3c00262
-
[62]
(62) Zhang, Z.; Dong, Q.; Li, P.; Fereja, S. L.; Guo, J.; Fang, Z.; Zhang, X.; Liu, K.; Chen, Z.; Chen, W. J. Phys. Chem. C 2021, 125 (45), 24814. doi:10.1021/acs.jpcc.1c08140
-
[63]
(63) Liu, C.; Li, H.; Chen, J.; Yu, Z.; Ru, Q.; Li, S.; Henkelman, G.; Wei, L.; Chen, Y. Small 2021, 17 (13), 2007249. doi:10.1002/smll.202007249
-
[64]
(64) Han, N.; Feng, S.; Guo, W.; Mora, O. M.; Zhao, X.; Zhang, W.; Xie, S.; Zhou, Z.; Liu, Z.; Liu, Q.; et al. SusMat 2022, 2 (4), 456. doi:10.1002/sus2.71
-
[65]
(65) Qian, J.; Liu, W.; Jiang, Y.; Mu, Y.; Cai, Y.; Shi, L.; Zeng, L. ACS Sustain. Chem. Eng. 2022, 10 (43), 14351. doi:10.1021/acssuschemeng.2c04965
-
[66]
(66) Chen, Z.; Wu, J.; Chen, Z.; Yang, H.; Zou, K.; Zhao, X.; Liang, R.; Dong, X.; Menezes, P. W.; Kang, Z. Angew. Chem. Int. Ed. 2022, 61 (21), e202200086. doi:10.1002/anie.202200086
-
[67]
(67) Wu, S.; Deng, D.; Wu, J.-C.; Zhu, L.; Yan, C.; Xu, L.; Li, H. ACS Sustain. Chem. Eng. 2024, 12 (1), 216. doi:10.1021/acssuschemeng.3c05426
-
[68]
(68) Kronka, M. S.; Cordeiro-Junior, P. J. M.; Mira, L.; dos Santos, A. J.; Fortunato, G. V.; Lanza, M. R. V. Mater. Chem. Phys. 2021, 267, 124575. doi:10.1016/j.matchemphys.2021.124575
-
[69]
(69) Gao, R.; Pan, L.; Li, Z.; Shi, C.; Yao, Y.; Zhang, X.; Zou, J.-J. Adv. Funct. Mater. 2020, 30 (24), 1910539. doi:10.1002/adfm.201910539
-
[70]
(70) Wang, H.; Mu, X.; Mao, Q.; Deng, K.; Yu, H.; Xu, Y.; Wang, Z.; Wang, L. ACS Appl. Nano Mater. 2023, 7 (1), 881. doi:10.1021/acsanm.3c04938
-
[71]
(71) Yang, T.; Yang, C.; Le, J.; Yu, Z.; Bu, L.; Li, L.; Bai, S.; Shao, Q.; Hu, Z.; Pao, C.-W.; et al. Nano Res. 2022, 15 (3), 1861. doi:10.1007/s12274-021-3786-0
-
[72]
(72) Chen, Z.; Liu, G.; Cao, W.; Yang, L.; Zhang, L.; Zhang, S.; Zou, J.; Song, R.; Fan, W.; Luo, S.; et al. Appl. Catal. B 2023, 334, 122825. doi:10.1016/j.apcatb.2023.122825
-
[73]
(73) Chen, Z.; Liu, G.; Yu, S.; Yang, L.; Zheng, L.; Wei, Z.; Luo, S. Chem. Eng. J. 2023, 474, 145581. doi:10.1016/j.cej.2023.145581
-
[74]
(74) Sheng, H.; Hermes, E. D.; Yang, X.; Ying, D.; Janes, A. N.; Li, W.; Schmidt, J. R.; Jin, S. ACS Catal. 2019, 9 (9), 8433. doi:10.1021/acscatal.9b02546
-
[75]
(75) Liang, J.; Wang, Y.; Liu, Q.; Luo, Y.; Li, T.; Zhao, H.; Lu, S.; Zhang, F.; Asiri, A. M.; Liu, F.; et al. J. Mater. Chem. A 2021, 9 (10), 6117. doi:10.1039/D0TA12008A
-
[76]
(76) Zhang, A.; Jiang, Z.; Zhang, S.; Lan, P.; Miao, N.; Chen, W.; Huang, N.; Tian, X.; Liu, Y.; Cai, Z. Appl. Catal., B 2023, 331, 122721. doi:10.1016/j.apcatb.2023.122721
-
[77]
(77) Zhang, A.; Liu, Y.; Wu, J.; Zhu, J.; Cheng, S.; Wang, Y.; Hao, Y.; Zeng, S. Chem. Eng. J. 2023, 454, 140317. doi:10.1016/j.cej.2022.140317
-
[78]
(78) Zhang, C.; Lu, R.; Liu, C.; Lu, J.; Zou, Y.; Yuan, L.; Wang, J.; Wang, G.; Zhao, Y.; Yu, C. Adv. Sci. 2022, 9 (12), 2104768. doi:10.1002/advs.202104768
-
[79]
(79) Xia, F.; Li, B.; Liu, Y.; Liu, Y.; Gao, S.; Lu, K.; Kaelin, J.; Wang, R.; Marks, T. J.; Cheng, Y. Adv. Funct. Mater. 2021, 31 (47), 2104716. doi:10.1002/adfm.202104716
-
[80]
(80) Ross, R. D.; Sheng, H.; Parihar, A.; Huang, J.; Jin, S. ACS Catal. 2021, 11 (20), 12643. doi:10.1021/acscatal.1c03349
-
[81]
(81) Lee, J.; Choi, S. W.; Back, S.; Jang, H.; Sa, Y. J. Appl. Catal. B 2022, 309, 121265. doi:10.1016/j.apcatb.2022.121265
-
[82]
(82) Song, M.; Chen, M.; Zhang, C.; Zhang, J.; Liu, W.; Huang, X.; Li, J.; Feng, G.; Wang, D. ACS Appl. Mater. Interfaces 2023, 15 (26), 31375. doi:10.1021/acsami.3c02793
-
[83]
(83) Yang, C.; Bai, S.; Yu, Z.; Feng, Y.; Huang, B.; Lu, Q.; Wu, T.; Sun, M.; Zhu, T.; Cheng, C.; et al. Nano Energy 2021, 89, 106480. doi:10.1016/j.nanoen.2021.106480
-
[84]
(84) Yu, Z.; Lv, S.; Yao, Q.; Fang, N.; Xu, Y.; Shao, Q.; Pao, C.-W.; Lee, J.-F.; Li, G.; Yang, L.-M.; et al. Adv. Mater. 2022, 35, 2208101. doi:10.1002/adma.202208101
-
[85]
(85) Yuan, Q.; Zhao, J.; Mok, D. H.; Zheng, Z.; Ye, Y.; Liang, C.; Zhou, L.; Back, S.; Jiang, K.Nano Lett. 2021, 22 (3), 1257. doi:10.1021/acs.nanolett.1c04420
-
[86]
(86) Wang, J.; Liu, X.; Liao, T.; Ma, C.; Chen, B.; Li, Y.; Fan, X.; Peng, W. Appl. Catal. B 2024, 341, 123344. doi:10.1016/j.apcatb.2023.123344
-
[87]
(87) Sheng, H.; Janes, A. N.; Ross, R. D.; Kaiman, D.; Huang, J.; Song, B.; Schmidt, J. R.; Jin, S. Energy Environ. Sci. 2020, 13 (11), 4189. doi:10.1039/d0ee01925a
-
[88]
(88) Zhang, X.-L.; Su, X.; Zheng, Y.-R.; Hu, S.-J.; Shi, L. Gao, F.-Y.; Yang, P.-P.; Niu, Z.-Z.; Wu, Z.-Z.; Qin, S.; et al. Angew. Chem. Int. Ed. 2021, 60 (52), 26922. doi:10.1002/anie.202111075
-
[89]
(89) Xie, J.; Zhong, L.; Yang, X.; He, D; Lin, K.; Chen, X.; Wang, H.; Gan, S.; Niu, L. Chin. Chem. Lett. 2024, 35 (1), 108472. doi:10.1016/j.cclet.2023.108472
-
[90]
(90) Zhang, L.; Liang, J.; Yue, L.; Xu, Z.; Dong, K.; Liu, Q; Luo, Y.; Li, T.; Cheng, X.; Cui, G.; et al. Nano Res. 2021, 15 (1), 304. doi:10.1007/s12274-021-3474-0
-
[91]
(91) Jia, Y.; Xiong, X.; Wang, D.; Duan, X.; Sun, K.; Li, Y.; Zheng, L.; Lin, W.; Dong, M.; Zhang, G.; et al. Nano Micro Lett. 2020, 12 (1), 116. doi:10.1007/s40820-020-00456-8
-
[92]
(92) Fan, M.; Yuan, Q.; Zhao, Y.; Wang, Z.; Wang, A.; Liu, Y.; Sun, K.; Wu, J.; Wang, L.; Jiang, J. Adv. Mater. 2022, 34 (13), 2107040. doi:10.1002/adma.202107040
-
[93]
(93) Ni, B.; Shen, P.; Zhang, G.; Zhao, J.; Ding, H.; Ye, Y.; Yue, Z.; Yang, H.; Wei, H.; Jiang, K. J. Am. Chem. Soc. 2024, 146 (16), 11181. doi:10.1021/jacs.3c14186
-
[94]
(94) Wang, X.-R.; Liu, J.-Y.; Liu, Z.-W.; Wang, W.-C.; Luo, J.; Han, X.-P.; Du, X.-W.; Qiao, S.-Z.; Yang, J. Adv. Mater. 2018, 30, 1800005. doi:10.1002/adma.201800005
-
[95]
(95) Liu, J.; Song, P.; Ruan, M.; Xu, W. Chin. J. Catal. 2016, 37 (7), 1119. doi:10.1016/S1872-2067(16)62456-7
-
[96]
(96) Ji, Y.; Liu, Y.; Zhang, B.-W.; Xu, Z.; Qi, X.; Xu, X.; Ren, L.; Du, Y.; Zhong, J.; Dou, S. X. J. Mater. Chem. A 2021, 9 (37), 21340. doi:10.1039/d1ta05731f
-
[97]
(97) Wang, Y.; Huang, H.; Wu, J.; Yang, H.; Kang, Z.; Liu, Y.; Wang, Z.; Menezes, P. W.; Chen, Z. Adv. Sci. 2022, 10 (4), 22053475. doi:10.1002/advs.202205347
-
[98]
(98) Sheng, H.; Janes, A. N.; Ross, R. D.; Hofstetter, H.; Lee, K.; Schmidt, J. R.; Jin, S. Nat. Catal. 2022, 5 (8), 716. doi:10.1038/s41929-022-00826-y
-
[99]
(99) Sun, Q.; Xu, G.; Xiong, B.; Chen, L.; Shi, J. Nano Res. 2022, 16 (4), 4729. doi:10.1007/s12274-022-5160-2
-
[100]
(100) Sun, X.; Zhu, X.; Wang, Y.; Li, Y. Chin. J. Catal. 2022, 43 (6), 1520. doi:10.1016/s1872-2067(21)64007-x
-
[101]
(101) Lee, Y.; Koh, J.; Ahn, H.; Jang, H.; Sa, Y. J. Appl. Surf. Sci. 2024, 647, 158976. doi:10.1016/j.apsusc.2023.158976
-
[102]
(102) Dhabarde, N.; Ferrer, A.; Tembo, P. M.; Raja, K. S.; Subramanian, V. R. J. Electrochem. Soc. 2023, 170 (1), 016506. doi:10.1149/1945-7111/acafa5
-
[103]
(103) Zhang, L.; Liang, J.; Yue, L.; Dong, K.; Xu, Z.; Li, T.; Liu, Q.; Luo, Y.; Liu, Y.; Gao, S.; et al. J. Mater. Chem. A 2021, 9 (38), 21703. doi:10.1039/d1ta06313h
-
[104]
(104) Zhao, X.; Wang, Y.; Da, Y.; Wang, X.; Wang, T.; Xu, M.; He, X.; Zhou, W.; Li, Y.; Coleman, J. N.; et al. Natl. Sci. Rev. 2020, 7 (8), 1360. doi:10.1093/nsr/nwaa084
-
[105]
(105) Liu, M.; Yang, M.; Shu, X.; Zhang, J. 2021, 37 (9), 2007072. doi:10.3866/PKU.WHXB202007072
-
[106]
(106) Tian, X.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Joule 2020, 4 (1), 45. doi:10.1016/j.joule.2019.12.014
-
[107]
(107) Chen, Y.; Zhang, S.; Chung-Yen Jung, J.; Zhang, J. Prog. Energy Combust. Sci. 2023, 98, 101101. doi:10.1016/j.pecs.2023.101101
-
[108]
(108) Zhang, D.; Mitchell, E. ;Lu, X.; Chu, D.; Shang, L.; Zhang, T.; Amal, R.; Han, Z. Mater. Today 2023, 63, 339. doi:10.1016/j.mattod.2023.02.004
-
[109]
(109) Hu, J.; Liu, W.; Xin, C.; Guo, J.; Cheng, X.; Wei, J.; Hao, C.; Zhang, G.; Shi, Y. J. Mater. Chem. A 2021, 9 (44), 24803. doi:10.1039/D1TA06144E
-
[110]
(110) Jiang, H.; Wang, Y.; Hu, J.; Shai, X.; Zhang, C.; Le, T.; Zhang, L,; Shao, M. Chem. Eng. J. 2023, 452, 139449. doi:10.1016/j.cej.2022.139449
-
[111]
(111) Zhang, X.; Ren, K.; Liu, Y.; Gu, Z.; Huang, Z.; Zheng, S.; Wang, X.; Guo, J.; Zatovsky, I. V.; Cao, J.; et al. Acta Phys. -Chim. Sin. 2023, 40 (7), 2307057. doi:10.3866/PKU.WHXB202307057
-
[112]
(112) Mei, X.; Zhao, X.; Chen, Y.; Deng, B.; Geng, Q.; Cao, Y.; Li, Y.; Dong, F. ACS Sustain. Chem. Eng. 2023, 11 (43), 15609. doi:10.1021/acssuschemeng.3c04194
-
[113]
(113) Chen, Q.; Ma, C.; Yan, S.; Liang, J.; Dong, K.; Luo, Y.; Liu, Q.; Li, T.; Wang, Y.; Yue, L.; et al. ACS Appl. Mater. Interfaces 2021, 13 (39), 46659. doi:10.1021/acsami.1c13307
-
[114]
(114) Zhang, L.; Jiang, S.; Ma, W.; Zhou, Z. Chin. J. Catal. 2022, 43 (6), 1433. doi:10.1016/S1872-2067(21)63961-X
-
[115]
(115) Yang, L.; Shui, J.; Du, L.; Shao, Y.; Liu, J.; Dai, L.; Hu, Z. Adv. Mater. 2019, 31 (13), 1804799. doi:10.1002/adma.201804799
-
[116]
(116) Deng, Y.; Luo, J.; Chi, B.; Tang, H.; Li, J.; Qiao, X.; Shen, Y.; Yang, Y.; Jia, C.; Rao, P.; et al. Adv. Energy Mater. 2021, 11 (37), 2101222. doi:10.1002/aenm.202101222
-
[117]
(117) Bhoyate, S. D.; Kim, J.; de Souza, F. M.; Lin, J.; Lee, E.; Kumar, A.; Gupta, R. K. Coord. Chem. Rev. 2023, 474, 214854. doi:10.1016/j.ccr.2022.214854
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[3]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[4]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[5]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[6]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[7]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[8]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[9]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[10]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
-
[11]
Chunmei GUO , Weihan YIN , Jingyi SHI , Jianhang ZHAO , Ying CHEN , Quli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162
-
[12]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[13]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[14]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[15]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[16]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[17]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[18]
Rong Tian , Yadi Yang , Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064
-
[19]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[20]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[1]
Metrics
- PDF Downloads(10)
- Abstract views(579)
- HTML views(89)