Citation: Xiaofeng Zhu,  Bingbing Xiao,  Jiaxin Su,  Shuai Wang,  Qingran Zhang,  Jun Wang. Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240700. doi: 10.3866/PKU.WHXB202407005 shu

Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides

  • Corresponding author: Xiaofeng Zhu,  Qingran Zhang,  Jun Wang, 
  • Received Date: 7 July 2024
    Revised Date: 3 August 2024
    Accepted Date: 3 August 2024

    Fund Project: The work was supported by the National Natural Science Foundation of China (52202305, 22176155), National Natural Science Foundation of Sichuan Province, China (2023NSFSC0095), Outstanding Youth Talents of Sichuan Science and Technology Program (22JCQN0061), Long Shan Talents Plan of SWUST (22zx7103), and Scientific Research Foundation for the Returned Overseas Chinese Scholars, Department of Human Resource and Social Security of Sichuan Province (22zd3148).

  • Electrochemical oxygen reduction reaction via the two-electron pathway (2e-ORR) is becoming a promising and sustainable approach to producing hydrogen peroxide (H2O2) without significant carbon footprints. To achieve better performance, most of the recent progress and investigations have focused on developing novel carbon-based electrocatalysts. Nevertheless, the sophisticated preparations, decreased selectivity and undefined active sites of carbon-based catalysts have been generally acknowledged and criticized. To this end, transition metal oxides and chalcogenides have increasingly emerged for 2e-ORR, due to their catalytic stability and tunable microstructure. Here, the development of metal oxides and chalcogenides for O2-to-H2O2 conversion is prospectively reviewed. By summarizing previous theoretical and experimental efforts, their diversity and outstanding catalytic activity are firstly provided. Meanwhile, the topological and chemical factors influencing 2e-ORR selectivity of the metal oxides/chalcogenides are systematically elucidated, including morphology, phase structures, doping and defects engineering. Thus, emphasizing the influence on the binding of ORR intermediates, the active sites and the underlying mechanism is highlighted. Finally, future opportunities and challenges in designing metal oxides/chalcogenides-based catalysts for H2O2 electro-synthesis are outlined. The present review provides insights and fundamentals of metal oxides/chalcogenides as 2e-ORR catalysts, promoting their practical application in the energy-related industry.
  • 加载中
    1. [1]

      (1) Hu, X.; Sun, Z.; Mei, G.; Zhao, X.; Xia, B. Y.; You, B. Adv. Energy Mater. 2022, 12 (32), 2201466. doi:10.1002/aenm.202201466

    2. [2]

      (2) Yu, F.-Y.; Zhou, Y.-J.; Tan, H.-Q.; Li, Y.-G.; Kang, Z.-H. Adv. Energy Mater. 2023, 13 (14), 2300119. doi:10.1002/aenm.202300119

    3. [3]

      (3) Xie, Y.; Zhang, Q.; Sun, H.; Teng, Z; Su, C. Acta Phys. -Chim. Sin. 2023, 39 (11), 2301001. doi:10.3866/PKU.WHXB202301001

    4. [4]

      (4) Lin, L.; Sun, Z.; Chen, H.; Zhao, L.; Sun, M.; Yang, Y.; Liao, Z.; Wu, X.; Li, X.; Tang, C. Acta Phys. -Chim. Sin. 2023, 40 (4), 2305019. doi:10.3866/PKU.WHXB202305019

    5. [5]

      (5) Knotter, D. M. The Chemistry of Wet Cleaning. In Handbook of Cleaning in Semiconductor Manufacturing; Reinhardt, K. A., Reidy R. F., Eds.; Scrivener: Beverly, USA, 2010; pp. 39–94. doi:10.1002/9781118071748.ch2

    6. [6]

      (6) Yuan, M.; Li, D.; Zhao, X.; Ma, W; Kong, K; Ni, W; Gu, Q; Hou, Z. Acta Phys. -Chim. Sin. 2018, 34 (8), 886. doi:10.3866/PKU.WHXB201711151

    7. [7]

      (7) Du, K.-S.; Huang, J.-M. Green Chem. 2018, 20 (6), 1405. doi:10.1039/C7GC03864J

    8. [8]

      (8) Dan, M.; Zhong, R.; Hu, S.; Wu, H.; Zhou, Y.; Liu, Z-Q. Chem. Catal. 2022, 2 (8), 1919. doi:10.1016/j.checat.2022.06.002

    9. [9]

      (9) Lu, X.; Wang, D.; Wu, K.-H.; Guo, X.; Qi, W. J. Colloid Interface Sci. 2020, 573, 376. doi:10.1016/j.jcis.2020.04.030

    10. [10]

      (10) Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Angew. Chem. Int. Ed. 2006, 45 (42), 6962. doi:10.1002/anie.200503779

    11. [11]

      (11) Xia, C.; Kim, J. Y.; Wang, H. Nat. Catal. 2020, 3 (8), 605. doi:10.1038/s41929-020-0486-1

    12. [12]

      (12) Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L,; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. ACS Catal. 2018, 8 (5), 4064. doi:10.1021/acscatal.8b00217

    13. [13]

      (13) Samanta, C. Appl. Catal., A 2008, 350 (2), 133. doi:10.1016/j.apcata.2008.07.043

    14. [14]

      (14) Lin, Z.; Zhang, Q.; Pan, J.; Tsounis, C.; Esmailpour, A. A.; Xi, S.; Yang, H. Y.; Han, Z.; Yun, J.; Amal, R.; et al. Energy Environ. Sci. 2022, 15 (3), 1172. doi:10.1039/D1EE02884G

    15. [15]

      (15) Li, Hc.; Wan, Q.; Du, C.; Zhao, J.; Li, F.; Zhang, Y.; Zheng, Y.; Chen, M.; Zhang, K. H. L.; Huang, J.; et al. Nat. Commun. 2022, 13 (1), 6072. doi:10.1038/s41467-022-33757-0

    16. [16]

      (16) Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys. -Chim. Sin. 2023, 39 (6), 2212010. doi:10.3866/PKU.WHXB202212010

    17. [17]

      (17) Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39 (6), 2209016. doi:10.3866/PKU.WHXB202209016

    18. [18]

      (18) Wu, Y.; Yang, Y.; Gu, M.; Bie, C.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 53, 123. doi:10.1016/S1872-2067(23)64514-0

    19. [19]

      (19) Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat. Commun. 2024, 15 (1), 3212. doi:10.1038/s41467-024-47624-7

    20. [20]

      (20) Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat. Commun. 2024, 15 (1), 1313. doi:10.1038/s41467-024-45604-5

    21. [21]

      (21) Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36 (24), 2400288. doi:10.1002/adma.202400288

    22. [22]

      (22) Zhang, Y.; Zhou, W.; Tang, Y.; Guo, Y.; Geng, Z.; Liu, L.; Tan, X.; Wang, H.; Yu, T.; Ye, J. Appl. Catal., B 2022, 305 (15), 121055. doi:10.1016/j.apcatb.2021.121036

    23. [23]

      (23) Sa, Y. J.; Kim, J. H.; Joo, S. H. Angew. Chem. Int. Ed. 2018, 58 (4), 1100. doi:10.1002/anie.201812435

    24. [24]

      (24) Ouyang, D.; Gao, D.; Qiang, Y.; Zhao, X. Appl. Catal. B 2023, 328 (5), 122491. doi:10.1016/j.apcatb.2023.122491

    25. [25]

      (25) Jeong, S. W.; Wang, N.; Kitano, S.; Habazaki, H.; Aoki,Y. Adv. Energy Mater. 2021, 11 (37), 2102025. doi:10.1002/aenm.202102025

    26. [26]

      (26) Zhang, Q.; Chen, Y.; Pan, J.; Daiyan, R.; Lovell, E.C.; Yun, J.; Amal, R.; Lu, X. Small 2023, 19 (40), 2302338. doi:10.1002/smll.202302338

    27. [27]

      (27) Zhang, J.; Zhang, G.; Jin, S.; Zhou, Y.; Ji, Q.; Lan, H.; Liu, H.; Qu, J. Carbon 2020, 163 (15), 154. doi:10.1016/j.carbon.2020.02.084

    28. [28]

      (28) Jia, N.; Yang, T.; Shi, S.; Chen, X.; An, Z.; Chen, Y.; Yin, S.; Chen, P. ACS Sustain. Chem. Eng. 2020, 8 (7), 2883. doi:10.1021/acssuschemeng.9b07047

    29. [29]

      (29) Wu, Q.; Zou, H.; Mao, X.; He, J.; Shi, Y.; Chen, S.; Yan, X.; Wu, L.; Lang, C.; Zhang, B.; et al. Nat. Commun. 2023, 14 (1), 6275. doi:10.1038/s41467-023-41947-7

    30. [30]

      (30) Zhang, C.; Shen, W.; Guo, K.; Xiong, M.; Zhang, J.; Lu, X. J. Am. Chem. Soc. 2023, 145 (21), 11589. doi:10.1021/jacs.3c00689

    31. [31]

      (31) Wu, K.-H.; Wang, D.; Lu, X.; Zhang, X.; Xie, Z.; Liu, Y.; Su, B.-J.; Chen, J.-M.; Su, D.-S.; Qi, W.; et al. Chem 2020, 6 (6), 1443. doi:10.1016/j.chempr.2020.04.002

    32. [32]

      (32) Su, J.; Xiao, B.; Wang, J.; Zhu, X. Sci. Energy Environ. 2024, 1, 4. doi:10.53941/see.2024.100004

    33. [33]

      (33) Liu, H.; Meng, G.; Deng, Z.; Li, M.; Chang, J.; Dai, T.; Fang, X. Acta Phys. -Chim. Sin. 2022, 38 (5), 2008018. doi:10.3866/PKU.WHXB202008018

    34. [34]

      (34) Yang, S.; Xu, Y.; Hao, Z.; Qin, S.; Zhang, R.; Han, Y.; Du, L.; Zhu, Z.; Du, A.; Chen, X.; et al. Acta Phys. -Chim. Sin. 2023, 39 (5), 2211025. doi:10.3866/PKU.WHXB202211025

    35. [35]

      (35) Li, Q.; Meng, J.; Li, Z. J. Mater. Chem. A 2022, 10 (15), 8107. doi:10.1039/D2TA00075J

    36. [36]

      (36) Zhao, C.-X.; Liu, J.-N.; Li, B.-Q.; Ren, D.; Chen, X.; Yu, J.; Zhang, Q. Adv. Funct. Mater. 2020, 30 (36), 2003619. doi:10.1002/adfm.202003619

    37. [37]

      (37) Wu, W.; Yan, Y.; Wang, X.; Wei, C.; Yang; Xu, T.; Li, X. J. Mater. Chem. A 2024, 12 (23), 13818. doi:10.1039/D4TA01430H

    38. [38]

      (38) Shi, X.; Wang, H.; Ji, S.; Linkov, V.; Liu, F.; Wang, R. Chem. Eng. J. 2019, 364 (15), 320. doi:10.1016/j.cej.2019.01.156

    39. [39]

      (39) Kuang, P.; Ni, Z.; Zhu, B.; Lin, Y.; Yu, J. Adv. Mater. 2023, 35 (41), 2303030. doi:10.1002/adma.202303030

    40. [40]

      (40) Lv, J.; Xie, J.; Mohamed, A. G. A.; Zhang, X.; Wang, Y. Chem. Soc. Rev. 2022, 51 (4), 1511. doi:10.1039/D1CS00859E

    41. [41]

      (41) Yu, Y.; Rao, P.; Feng, S.; Chen, M.; Deng, P.; Li, J.; Miao, Z.; Kang, Z.; Shen, Y.; Tian, X. Acta Phys. -Chim. Sin. 2023, 39 (8), 2210039. doi:10.3866/PKU.WHXB202210039

    42. [42]

      (42) Wang, N.; Ma, S.; Zuo, P.; Duan, J.; Hou, B. Adv. Sci. 2021, 8 (15), 2100076. doi:10.1002/advs.202100076

    43. [43]

      (43) Han, N.; Zhang, W.; Guo, W.; Pan, H.; Jiang, B.; Xing, L.; Tian, H.; Wang, G.; Zhang, X.; Fransaer, J. Nano Micro Lett. 2023, 15 (1), 185. doi:10.1007/s40820-023-01152-z

    44. [44]

      (44) Alonso-Vante, N. Transition Metal Chalcogenides for Oxygen Reduction. In Electrocatalysis in Fuel Cells: A Non- and Low- Platinum Approach; Shao, M., Ed.; Springer: London, UK, 2013; pp. 417–436. doi:10.1007/978-1-4471-4911-8_14

    45. [45]

      (45) Li, H.; Kelly, S.; Guevarra, D.; Wang, Z.; Wang, Y.; Haber, J. A.; Anand, M.; Gunasooriya, G. T. K. K.; Abraham, C. S.; Vijay, S.; et al. Nat. Catal. 2021, 4 (6), 463. doi:10.1038/s41929-021-00618-w

    46. [46]

      (46) Zhao, D.; Zhuang, Z.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. Chem. Soc. Rev. 2020, 49 (7), 2215. doi:10.1039/C9CS00869A

    47. [47]

      (47) Tian, Y.; Deng, D.; Xu, L.; Li, M.; Chen, H.; Wu, Z.; Zhang, S. Nano Micro Lett. 2023, 15 (1), 122. doi:10.1007/s40820-023-01067-9

    48. [48]

      (48) Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M. Chem. Rev. 2018, 118 (5), 2340. doi:10.1021/acs.chemrev.7b00542

    49. [49]

      (49) Zhou, R.; Zheng, Y.; Jaroniec, M.; Qiao, S.-Z. ACS Catal. 2016, 6 (7), 4720. doi:10.1021/acscatal.6b01581

    50. [50]

      (50) Lu, H.; Li, X.; Monny, S. A.; Wang, Z.; Wang, L. Chin. J. Catal. 2022, 43 (5), 1204. doi:10.1016/S1872-2067(21)64028-7

    51. [51]

      (51) Wu, T.; Ren, X.; Sun, Y.; Sun, S.; Xian, G.; Scherer, G. G.; Fisher, A. C.; Mandler, D.; Ager, J. W.; Grimaud, A.; et al. Nat. Commun. 2021, 12 (1), 3634. doi:10.1038/s41467-021-23896-1

    52. [52]

      (52) Zhang, T.; Ren, X.; Ma, F.; Jiang, X.; Wen, Y.; He, W.; Hao, L.; Zeng, C.; Liu, H.; Chen, R.; et al. Appl. Mater. Today 2023, 34, 101912. doi:10.1016/j.apmt.2023.101912

    53. [53]

      (53) Wu, Z.; Wang, T.; Zou, J.-J.; Li, Y.; Zhang, C. ACS Catal. 2022, 12 (10), 5911. doi:10.1021/acscatal.2c01829

    54. [54]

      (54) Yan, L.; Cheng, X.; Wang, Y.; Wang, Z.; Zheng, L.; Yan, Y.; Lu, Y.; Sun, S.; Qiu, W.; Chen, G. Mater. Today Energy 2022, 24, 100931. doi:10.1016/j.mtener.2021.100931

    55. [55]

      (55) Wu, J.; Han, Y.; Bai, Y.; Wang, X.; Zhou, Y.; Zhu, W.; He, T.; Wang, Y.; Huang, H.; Liu, Y.; et al. Adv. Funct. Mater. 2022, 32 (32), 2203647. doi:10.1002/adfm.202203647

    56. [56]

      (56) Aveiro, L. R.; da Silva, A. G. M.; Antonin, V. S.; Candido, E. G.; Parreira, L. S.; Geonmonond, R. S.; de Freitas, I. C.; Lanza, M. R. V.; Camargo, P. H. C.; Santos, M. C. Electrochim. Acta 2018, 268, 101. doi:10.1016/j.electacta.2018.02.077

    57. [57]

      (57) Li, J.; Wang, N.; Liu, K.; Duan, J.; Hou, B. Colloids Surf. A 2023, 668, 131446. doi:10.1016/j.colsurfa.2023.131446

    58. [58]

      (58) Kumar, S.; Fu, Y.-P. Electrochim. Acta 2023, 447, 142161. doi:10.1016/j.electacta.2023.142161

    59. [59]

      (59) Zhang, H.; An, Y.; Li, S.; Li, Z.; Geng, D.; Sha, D.; Pan, L.; Qiu, G.; Yan, C. Electrochim. Acta 2023, 463, 142047. doi:10.1016/j.electacta.2023.142852

    60. [60]

      (60) Ding, L.; Zhao, J.; Bao, Z.; Zhang, S.; Shi, H.; Liu, J.; Wang, G.; Peng, X.; Zhong, X.; Wang, J. J. Mater. Chem. A 2023, 11 (7), 3454. doi:10.1039/D2TA09450A

    61. [61]

      (61) Zhang, S.; Feng, G.; Bao, Z.; Peng, X.; Jiang, C.; Shao, Y.; Wang, S.; Wang, J. Indus. Eng. Chem. Res. 2023, 62 (15), 6113. doi:10.1021/acs.iecr.3c00262

    62. [62]

      (62) Zhang, Z.; Dong, Q.; Li, P.; Fereja, S. L.; Guo, J.; Fang, Z.; Zhang, X.; Liu, K.; Chen, Z.; Chen, W. J. Phys. Chem. C 2021, 125 (45), 24814. doi:10.1021/acs.jpcc.1c08140

    63. [63]

      (63) Liu, C.; Li, H.; Chen, J.; Yu, Z.; Ru, Q.; Li, S.; Henkelman, G.; Wei, L.; Chen, Y. Small 2021, 17 (13), 2007249. doi:10.1002/smll.202007249

    64. [64]

      (64) Han, N.; Feng, S.; Guo, W.; Mora, O. M.; Zhao, X.; Zhang, W.; Xie, S.; Zhou, Z.; Liu, Z.; Liu, Q.; et al. SusMat 2022, 2 (4), 456. doi:10.1002/sus2.71

    65. [65]

      (65) Qian, J.; Liu, W.; Jiang, Y.; Mu, Y.; Cai, Y.; Shi, L.; Zeng, L. ACS Sustain. Chem. Eng. 2022, 10 (43), 14351. doi:10.1021/acssuschemeng.2c04965

    66. [66]

      (66) Chen, Z.; Wu, J.; Chen, Z.; Yang, H.; Zou, K.; Zhao, X.; Liang, R.; Dong, X.; Menezes, P. W.; Kang, Z. Angew. Chem. Int. Ed. 2022, 61 (21), e202200086. doi:10.1002/anie.202200086

    67. [67]

      (67) Wu, S.; Deng, D.; Wu, J.-C.; Zhu, L.; Yan, C.; Xu, L.; Li, H. ACS Sustain. Chem. Eng. 2024, 12 (1), 216. doi:10.1021/acssuschemeng.3c05426

    68. [68]

      (68) Kronka, M. S.; Cordeiro-Junior, P. J. M.; Mira, L.; dos Santos, A. J.; Fortunato, G. V.; Lanza, M. R. V. Mater. Chem. Phys. 2021, 267, 124575. doi:10.1016/j.matchemphys.2021.124575

    69. [69]

      (69) Gao, R.; Pan, L.; Li, Z.; Shi, C.; Yao, Y.; Zhang, X.; Zou, J.-J. Adv. Funct. Mater. 2020, 30 (24), 1910539. doi:10.1002/adfm.201910539

    70. [70]

      (70) Wang, H.; Mu, X.; Mao, Q.; Deng, K.; Yu, H.; Xu, Y.; Wang, Z.; Wang, L. ACS Appl. Nano Mater. 2023, 7 (1), 881. doi:10.1021/acsanm.3c04938

    71. [71]

      (71) Yang, T.; Yang, C.; Le, J.; Yu, Z.; Bu, L.; Li, L.; Bai, S.; Shao, Q.; Hu, Z.; Pao, C.-W.; et al. Nano Res. 2022, 15 (3), 1861. doi:10.1007/s12274-021-3786-0

    72. [72]

      (72) Chen, Z.; Liu, G.; Cao, W.; Yang, L.; Zhang, L.; Zhang, S.; Zou, J.; Song, R.; Fan, W.; Luo, S.; et al. Appl. Catal. B 2023, 334, 122825. doi:10.1016/j.apcatb.2023.122825

    73. [73]

      (73) Chen, Z.; Liu, G.; Yu, S.; Yang, L.; Zheng, L.; Wei, Z.; Luo, S. Chem. Eng. J. 2023, 474, 145581. doi:10.1016/j.cej.2023.145581

    74. [74]

      (74) Sheng, H.; Hermes, E. D.; Yang, X.; Ying, D.; Janes, A. N.; Li, W.; Schmidt, J. R.; Jin, S. ACS Catal. 2019, 9 (9), 8433. doi:10.1021/acscatal.9b02546

    75. [75]

      (75) Liang, J.; Wang, Y.; Liu, Q.; Luo, Y.; Li, T.; Zhao, H.; Lu, S.; Zhang, F.; Asiri, A. M.; Liu, F.; et al. J. Mater. Chem. A 2021, 9 (10), 6117. doi:10.1039/D0TA12008A

    76. [76]

      (76) Zhang, A.; Jiang, Z.; Zhang, S.; Lan, P.; Miao, N.; Chen, W.; Huang, N.; Tian, X.; Liu, Y.; Cai, Z. Appl. Catal., B 2023, 331, 122721. doi:10.1016/j.apcatb.2023.122721

    77. [77]

      (77) Zhang, A.; Liu, Y.; Wu, J.; Zhu, J.; Cheng, S.; Wang, Y.; Hao, Y.; Zeng, S. Chem. Eng. J. 2023, 454, 140317. doi:10.1016/j.cej.2022.140317

    78. [78]

      (78) Zhang, C.; Lu, R.; Liu, C.; Lu, J.; Zou, Y.; Yuan, L.; Wang, J.; Wang, G.; Zhao, Y.; Yu, C. Adv. Sci. 2022, 9 (12), 2104768. doi:10.1002/advs.202104768

    79. [79]

      (79) Xia, F.; Li, B.; Liu, Y.; Liu, Y.; Gao, S.; Lu, K.; Kaelin, J.; Wang, R.; Marks, T. J.; Cheng, Y. Adv. Funct. Mater. 2021, 31 (47), 2104716. doi:10.1002/adfm.202104716

    80. [80]

      (80) Ross, R. D.; Sheng, H.; Parihar, A.; Huang, J.; Jin, S. ACS Catal. 2021, 11 (20), 12643. doi:10.1021/acscatal.1c03349

    81. [81]

      (81) Lee, J.; Choi, S. W.; Back, S.; Jang, H.; Sa, Y. J. Appl. Catal. B 2022, 309, 121265. doi:10.1016/j.apcatb.2022.121265

    82. [82]

      (82) Song, M.; Chen, M.; Zhang, C.; Zhang, J.; Liu, W.; Huang, X.; Li, J.; Feng, G.; Wang, D. ACS Appl. Mater. Interfaces 2023, 15 (26), 31375. doi:10.1021/acsami.3c02793

    83. [83]

      (83) Yang, C.; Bai, S.; Yu, Z.; Feng, Y.; Huang, B.; Lu, Q.; Wu, T.; Sun, M.; Zhu, T.; Cheng, C.; et al. Nano Energy 2021, 89, 106480. doi:10.1016/j.nanoen.2021.106480

    84. [84]

      (84) Yu, Z.; Lv, S.; Yao, Q.; Fang, N.; Xu, Y.; Shao, Q.; Pao, C.-W.; Lee, J.-F.; Li, G.; Yang, L.-M.; et al. Adv. Mater. 2022, 35, 2208101. doi:10.1002/adma.202208101

    85. [85]

      (85) Yuan, Q.; Zhao, J.; Mok, D. H.; Zheng, Z.; Ye, Y.; Liang, C.; Zhou, L.; Back, S.; Jiang, K.Nano Lett. 2021, 22 (3), 1257. doi:10.1021/acs.nanolett.1c04420

    86. [86]

      (86) Wang, J.; Liu, X.; Liao, T.; Ma, C.; Chen, B.; Li, Y.; Fan, X.; Peng, W. Appl. Catal. B 2024, 341, 123344. doi:10.1016/j.apcatb.2023.123344

    87. [87]

      (87) Sheng, H.; Janes, A. N.; Ross, R. D.; Kaiman, D.; Huang, J.; Song, B.; Schmidt, J. R.; Jin, S. Energy Environ. Sci. 2020, 13 (11), 4189. doi:10.1039/d0ee01925a

    88. [88]

      (88) Zhang, X.-L.; Su, X.; Zheng, Y.-R.; Hu, S.-J.; Shi, L. Gao, F.-Y.; Yang, P.-P.; Niu, Z.-Z.; Wu, Z.-Z.; Qin, S.; et al. Angew. Chem. Int. Ed. 2021, 60 (52), 26922. doi:10.1002/anie.202111075

    89. [89]

      (89) Xie, J.; Zhong, L.; Yang, X.; He, D; Lin, K.; Chen, X.; Wang, H.; Gan, S.; Niu, L. Chin. Chem. Lett. 2024, 35 (1), 108472. doi:10.1016/j.cclet.2023.108472

    90. [90]

      (90) Zhang, L.; Liang, J.; Yue, L.; Xu, Z.; Dong, K.; Liu, Q; Luo, Y.; Li, T.; Cheng, X.; Cui, G.; et al. Nano Res. 2021, 15 (1), 304. doi:10.1007/s12274-021-3474-0

    91. [91]

      (91) Jia, Y.; Xiong, X.; Wang, D.; Duan, X.; Sun, K.; Li, Y.; Zheng, L.; Lin, W.; Dong, M.; Zhang, G.; et al. Nano Micro Lett. 2020, 12 (1), 116. doi:10.1007/s40820-020-00456-8

    92. [92]

      (92) Fan, M.; Yuan, Q.; Zhao, Y.; Wang, Z.; Wang, A.; Liu, Y.; Sun, K.; Wu, J.; Wang, L.; Jiang, J. Adv. Mater. 2022, 34 (13), 2107040. doi:10.1002/adma.202107040

    93. [93]

      (93) Ni, B.; Shen, P.; Zhang, G.; Zhao, J.; Ding, H.; Ye, Y.; Yue, Z.; Yang, H.; Wei, H.; Jiang, K. J. Am. Chem. Soc. 2024, 146 (16), 11181. doi:10.1021/jacs.3c14186

    94. [94]

      (94) Wang, X.-R.; Liu, J.-Y.; Liu, Z.-W.; Wang, W.-C.; Luo, J.; Han, X.-P.; Du, X.-W.; Qiao, S.-Z.; Yang, J. Adv. Mater. 2018, 30, 1800005. doi:10.1002/adma.201800005

    95. [95]

      (95) Liu, J.; Song, P.; Ruan, M.; Xu, W. Chin. J. Catal. 2016, 37 (7), 1119. doi:10.1016/S1872-2067(16)62456-7

    96. [96]

      (96) Ji, Y.; Liu, Y.; Zhang, B.-W.; Xu, Z.; Qi, X.; Xu, X.; Ren, L.; Du, Y.; Zhong, J.; Dou, S. X. J. Mater. Chem. A 2021, 9 (37), 21340. doi:10.1039/d1ta05731f

    97. [97]

      (97) Wang, Y.; Huang, H.; Wu, J.; Yang, H.; Kang, Z.; Liu, Y.; Wang, Z.; Menezes, P. W.; Chen, Z. Adv. Sci. 2022, 10 (4), 22053475. doi:10.1002/advs.202205347

    98. [98]

      (98) Sheng, H.; Janes, A. N.; Ross, R. D.; Hofstetter, H.; Lee, K.; Schmidt, J. R.; Jin, S. Nat. Catal. 2022, 5 (8), 716. doi:10.1038/s41929-022-00826-y

    99. [99]

      (99) Sun, Q.; Xu, G.; Xiong, B.; Chen, L.; Shi, J. Nano Res. 2022, 16 (4), 4729. doi:10.1007/s12274-022-5160-2

    100. [100]

      (100) Sun, X.; Zhu, X.; Wang, Y.; Li, Y. Chin. J. Catal. 2022, 43 (6), 1520. doi:10.1016/s1872-2067(21)64007-x

    101. [101]

      (101) Lee, Y.; Koh, J.; Ahn, H.; Jang, H.; Sa, Y. J. Appl. Surf. Sci. 2024, 647, 158976. doi:10.1016/j.apsusc.2023.158976

    102. [102]

      (102) Dhabarde, N.; Ferrer, A.; Tembo, P. M.; Raja, K. S.; Subramanian, V. R. J. Electrochem. Soc. 2023, 170 (1), 016506. doi:10.1149/1945-7111/acafa5

    103. [103]

      (103) Zhang, L.; Liang, J.; Yue, L.; Dong, K.; Xu, Z.; Li, T.; Liu, Q.; Luo, Y.; Liu, Y.; Gao, S.; et al. J. Mater. Chem. A 2021, 9 (38), 21703. doi:10.1039/d1ta06313h

    104. [104]

      (104) Zhao, X.; Wang, Y.; Da, Y.; Wang, X.; Wang, T.; Xu, M.; He, X.; Zhou, W.; Li, Y.; Coleman, J. N.; et al. Natl. Sci. Rev. 2020, 7 (8), 1360. doi:10.1093/nsr/nwaa084

    105. [105]

      (105) Liu, M.; Yang, M.; Shu, X.; Zhang, J. 2021, 37 (9), 2007072. doi:10.3866/PKU.WHXB202007072

    106. [106]

      (106) Tian, X.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Joule 2020, 4 (1), 45. doi:10.1016/j.joule.2019.12.014

    107. [107]

      (107) Chen, Y.; Zhang, S.; Chung-Yen Jung, J.; Zhang, J. Prog. Energy Combust. Sci. 2023, 98, 101101. doi:10.1016/j.pecs.2023.101101

    108. [108]

      (108) Zhang, D.; Mitchell, E. ;Lu, X.; Chu, D.; Shang, L.; Zhang, T.; Amal, R.; Han, Z. Mater. Today 2023, 63, 339. doi:10.1016/j.mattod.2023.02.004

    109. [109]

      (109) Hu, J.; Liu, W.; Xin, C.; Guo, J.; Cheng, X.; Wei, J.; Hao, C.; Zhang, G.; Shi, Y. J. Mater. Chem. A 2021, 9 (44), 24803. doi:10.1039/D1TA06144E

    110. [110]

      (110) Jiang, H.; Wang, Y.; Hu, J.; Shai, X.; Zhang, C.; Le, T.; Zhang, L,; Shao, M. Chem. Eng. J. 2023, 452, 139449. doi:10.1016/j.cej.2022.139449

    111. [111]

      (111) Zhang, X.; Ren, K.; Liu, Y.; Gu, Z.; Huang, Z.; Zheng, S.; Wang, X.; Guo, J.; Zatovsky, I. V.; Cao, J.; et al. Acta Phys. -Chim. Sin. 2023, 40 (7), 2307057. doi:10.3866/PKU.WHXB202307057

    112. [112]

      (112) Mei, X.; Zhao, X.; Chen, Y.; Deng, B.; Geng, Q.; Cao, Y.; Li, Y.; Dong, F. ACS Sustain. Chem. Eng. 2023, 11 (43), 15609. doi:10.1021/acssuschemeng.3c04194

    113. [113]

      (113) Chen, Q.; Ma, C.; Yan, S.; Liang, J.; Dong, K.; Luo, Y.; Liu, Q.; Li, T.; Wang, Y.; Yue, L.; et al. ACS Appl. Mater. Interfaces 2021, 13 (39), 46659. doi:10.1021/acsami.1c13307

    114. [114]

      (114) Zhang, L.; Jiang, S.; Ma, W.; Zhou, Z. Chin. J. Catal. 2022, 43 (6), 1433. doi:10.1016/S1872-2067(21)63961-X

    115. [115]

      (115) Yang, L.; Shui, J.; Du, L.; Shao, Y.; Liu, J.; Dai, L.; Hu, Z. Adv. Mater. 2019, 31 (13), 1804799. doi:10.1002/adma.201804799

    116. [116]

      (116) Deng, Y.; Luo, J.; Chi, B.; Tang, H.; Li, J.; Qiao, X.; Shen, Y.; Yang, Y.; Jia, C.; Rao, P.; et al. Adv. Energy Mater. 2021, 11 (37), 2101222. doi:10.1002/aenm.202101222

    117. [117]

      (117) Bhoyate, S. D.; Kim, J.; de Souza, F. M.; Lin, J.; Lee, E.; Kumar, A.; Gupta, R. K. Coord. Chem. Rev. 2023, 474, 214854. doi:10.1016/j.ccr.2022.214854

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    6. [6]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    7. [7]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    8. [8]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    11. [11]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    12. [12]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    13. [13]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    16. [16]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    17. [17]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    18. [18]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    19. [19]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    20. [20]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

Metrics
  • PDF Downloads(2)
  • Abstract views(74)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return