Citation: Zhiquan Zhang, Baker Rhimi, Zheyang Liu, Min Zhou, Guowei Deng, Wei Wei, Liang Mao, Huaming Li, Zhifeng Jiang. Insights into the Development of Copper-based Photocatalysts for CO2 Conversion[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240602. doi: 10.3866/PKU.WHXB202406029
-
Utilizing sunlight as a renewable energy source, photocatalysis offers a potential solution to global warming and energy shortages by converting CO2 into useful solar fuels, including CO, CH4, CH3OH, and C2H5OH. Among the various formulations investigated, copper-based photocatalysts stand out as particularly appealing for CO2 conversion due to their cost-effectiveness and higher abundance in comparison to catalysts based on precious metals. This literature review provides a thorough summary of the latest developments in copper-based photocatalysts used for CO2 reduction reactions, including metallic copper, copper oxide, and cuprous oxide photocatalysts. The review also provides a categorical summary of the CO2 reduction products and a detailed categorical discussion of the means of modulation and modification of each copper-based catalyst. Finally, this review highlights the existing challenges and proposes future research directions in the development of copper-based photocatalysts for CO2 reduction, focusing on boosting energy utilization and improving product formation rates.
-
-
[1]
(1) Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. J. Am. Chem. Soc. 2020, 142, 9567. doi:10.1021/jacs.0c02973
-
[2]
(2) Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37, 2009030. doi:10.3866/pku.Whxb202009030
-
[3]
(3) Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi:10.3866/pku.Whxb202309031
-
[4]
(4) Zhou, M.; Wang, H.; Liu, R.; Liu, Z.; Xiao, X.; Li, W.; Gao, C.; Lu, Z.; Jiang, Z.; Shi, W.; et al. Angew. Chem. Int. Ed. 2024, e202407468. doi:10.1002/anie.202407468
-
[5]
(5) Chen, T.; Zhou, M.; Zhang, Z.; Yang, K.; Fu, X.; Li, H.; Shi, W.; Jiang, Z. Chem. Eng. Sci. 2024, 285, 119546. doi:10.1016/j.ces.2023.119546
-
[6]
(6) Huang, N.; He, H.; Liu, S.; Zhu, H.; Li, Y.; Xu, J.; Huang, J.; Wang, X.; Liao, P.; Chen, X. J. Am. Chem. Soc. 2021, 143, 17424. doi:10.1021/jacs.1c05839
-
[7]
(7) Rhimi, B.; Zhou, M.; Yan, Z.; Cai, X.; Jiang, Z. Nano-Micro Lett. 2024, 16, 64. doi:10.1007/s40820-023-01276-2
-
[8]
(8) Xiao, X.; Liu, Z.; Zhou, M.; Zhang, W.; Fu, X.; Li, H.; Jiang, Z. Chem. Eng. J. 2024, 479, 147560. doi:10.1016/j.cej.2023.147560
-
[9]
(9) Liang, J.; Zhang, W.; Liu, Z.; Song, Q.; Zhu, Z.; Guan, Z.; Wang, H.; Zhang, P.; Li, J.; Zhou, M.; et al. ACS Catal. 2022, 12, 12217. doi:10.1021/acscatal.2c03970
-
[10]
(10) Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi:10.1002/adma.202300643
-
[11]
(11) Dong, J.; Ji, S.; Zhang, Y.; Ji, M.; Wang, B.; Li, Y.; Chen, Z.; Xia, J.; Li, H. Acta Phys. -Chim. Sin. 2023, 39, 2212011. doi:10.3866/PKU.WHXB202212011
-
[12]
(12) Liu, G.; Li, L.; Wang, B.; Shan, N.; Dong, J.; Ji, M.; Zhu, W.; Chu, P. K.; Xia, J.; Li, H. Acta Phys. -Chim. Sin. 2024, 40, 2306041. doi:10.3866/PKU.WHXB202306041
-
[13]
(13) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi:10.1002/adfm.202214470
-
[14]
(14) Li, G.; Sun, Y.; Zhang, Q.; Gao, Z.; Sun, W.; Zhou, X. Chem. Eng. J. 2021, 410, 128397. doi:10.1016/j.cej.2020.128397
-
[15]
(15) Wang, H.; Zhang, L.; Zhou, Y.; Qiao, S.; Liu, X.; Wang, W. Appl. Catal. B: Environ. 2020, 263, 118331. doi:10.1016/j.apcatb.2019.118331
-
[16]
(16) Zhu, Y.; Gao, C.; Bai, S.; Chen, S.; Long, R.; Song, L.; Li, Z.; Xiong, Y. Nano Res. 2017, 10, 3396. doi:10.1007/s12274-017-1552-0
-
[17]
(17) Xin, Y.; Yu, K.; Zhang, L.; Yang, Y.; Yuan, H.; Li, H.; Wang, L.; Zeng, J. Adv. Mater. 2021, 33, 2008145. doi:10.1002/adma.202008145
-
[18]
(18) Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116, 3722. doi:10.1021/acs.chemrev.5b00482
-
[19]
(19) Wang, W.; Wang, L.; Su, W.; Xing, Y. J. CO2 Util. 2022, 61, 102056. doi:10.1016/j.jcou.2022.102056
-
[20]
(20) Jiang, W.; Loh, H.; Low, B. Q. L.; Zhu, H.; Low, J.; Heng, J. Z. X.; Tang, K. Y.; Li, Z.; Loh, X. J.; Ye, E.; et al. Appl. Catal. B: Environ. 2023, 321, 122079. doi:10.1016/j.apcatb.2022.122079
-
[21]
(21) Zhong, K.; Sun, P.; Xu, H. Small 2024, 2310677. doi:10.1002/smll.202310677
-
[22]
(22) Guo, R. T.; Wang, J.; Bi, Z. X.; Chen, X.; Hu, X.; Pan, W. G. Small 2023, 19, 2206314. doi:10.1002/smll.202206314
-
[23]
(23) Ran, J.; Jaroniec, M.; Qiao, S. Z. Adv. Mater. 2018, 30, 1704649. doi:10.1002/adma.201704649
-
[24]
(24) Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Mater. Today 2020, 32, 222. doi:10.1016/j.mattod.2019.06.009
-
[25]
(25) Khalil, M.; Gunlazuardi, J.; Ivandini, T. A.; Umar, A. Renew. Sust. Energy Rev. 2019, 113, 109246. doi:10.1016/j.rser.2019.109246
-
[26]
(26) Gong, E.; Ali, S.; Hiragond, C. B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S.-I. Energ. Environ. Sci. 2022, 15, 880. doi:10.1039/d1ee02714j
-
[27]
(27) Ji, Y.; Luo, Y. ACS Catal. 2016, 6, 2018. doi:10.1021/acscatal.5b02694
-
[28]
(28) Vahidzadeh, E.; Zeng, S.; Manuel, A. P.; Riddell, S.; Kumar, P.; Alam, K. M.; Shankar, K. ACS Appl. Mater. Interfaces 2021, 13, 7248. doi:10.1021/acsami.0c21067
-
[29]
(29) Ou, H.; Li, G.; Ren, W.; Pan, B.; Luo, G.; Hu, Z.; Wang, D.; Li, Y. J. Am. Chem. Soc. 2022, 144, 22075. doi:10.1021/jacs.2c09424
-
[30]
(30) Ali, S.; Razzaq, A.; Kim, H.; In, S. Chem. Eng. J. 2022, 429, 131579. doi:10.1016/j.cej.2021.131579
-
[31]
(31) Qian, X.; Zhang, L.; Lin, Y.; Wang, M.; Wang, X.; Su, W. Appl. Surf. Sci. 2021, 568. doi:10.1016/j.apsusc.2021.150985
-
[32]
(32) Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi:10.1038/s41467-024-49004-7
-
[33]
(33) Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem. 2020, 6, 1543. doi:10.1016/j.chempr.2020.06.010
-
[34]
(34) Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi:10.1002/adma.202310600
-
[35]
(35) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, 202218688. doi:10.1002/anie.202218688
-
[36]
(36) Zhang, Z.; Li, X.; Tang, H.; Wu, J.; Yao, C.; Li, K. Chin. Chem. Lett. 2024, 109700. doi:10.1016/j.cclet.2024.109700
-
[37]
(37) Li, L.; Guo, C.; Li, T.; Yang, C.; Chen, F.; Wang, W.; Yan, R.; Ning, J.; Hu, Y. Appl. Surf. Sci. 2024, 651, 159220. doi:10.1016/j.apsusc.2023.159220
-
[38]
(38) Shi, W.; Qiao, X.; Wang, J.; Zhao, M.; Ge, H.; Ma, J.; Liu, S.; Zhang, W. Nanomaterials 2022, 12, 3247. doi:10.3390/nano12183247
-
[39]
(39) Liu, X.; Wu, Y.; Li, Y.; Yang, X.; Ma, Q.; Luo, J. Chem. Eng. J. 2024, 485, 149855. doi:10.1016/j.cej.2024.149855
-
[40]
(40) Zhang, Z.; Liang, J.; Zhang, W.; Zhou, M.; Zhu, X.; Liu, Z.; Li, Y.; Guan, Z.; Lee, C.-S.; Wong, P. K.; et al. Appl. Catal. B: Environ. 2023, 330, 122621. doi:10.1016/j.apcatb.2023.122621
-
[41]
(41) Jiang, Z.; Zhang, Z.; Liang, J.; Zhou, M.; Liu, D.; Mao, D.; Zhang, Q.; Zhang, W.; Li, H.; Song, L.; et al. Adv. Funct. Mater. 2023, 33, 2301785. doi:10.1002/adfm.202301785
-
[42]
(42) Fang, B.; Xing, Y.; Bonakdarpour, A.; Zhang, S.; Wilkinson, D. P. ACS Sustain. Chem. Eng. 2015, 3, 2381. doi:10.1021/acssuschemeng.5b00724
-
[43]
(43) Wang, W. N.; Wu, F.; Myung, Y.; Niedzwiedzki, D. M.; Im, H. S.; Park, J.; Banerjee, P.; Biswas, P. ACS Appl. Mater. Interfaces 2015, 7, 5685. doi:10.1021/am508590j
-
[44]
(44) Jiang, H.; Katsumata, K.-I.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A. Appl. Catal. B: Environ. 2018, 224, 783. doi:10.1016/j.apcatb.2017.11.011
-
[45]
(45) Zhu, Q.; Zhu, K.; Cai, M.; Zhang, Y.; Shao, Z.; Jiang, M.; Wang, X.; Geng, Z.; Wu, X.; Li, M.; et al. Nano Res. 2022, 15, 7099. doi:10.1007/s12274-022-4397-0
-
[46]
(46) Dong, W.; Jia, J.; Wang, Y.; An, J.; Yang, O.; Gao, X.; Liu, Y.; Zhao, J.; Li, D. Chem. Eng. J. 2022, 438, 135622. doi:10.1016/j.cej.2022.135622
-
[47]
(47) Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Adv. Mater. 2017, 29, 1601694. doi:10.1002/adma.201601694
-
[48]
(48) Barrocas, B. T.; Ambrozova, N.; Koci, K. Materials 2022, 15, 967. doi:10.3390/ma15030967
-
[49]
(49) Dai, B.; Zhao, W.; Wei, W.; Cao, J.; Yang, G.; Li, S.; Sun, C.; Leung, D. Y. C. Carbon 2022, 193, 272. doi:10.1016/j.carbon.2022.03.038
-
[50]
(50) Liu, J.; Qi, F.; Zhang, N.; Yang, J.; Liang, Z.; Tian, C.; Zhang, W.; Tang, X.; Wu, D.; Huang, Q. J. Mater. Sci. 2022, 57, 15474. doi:10.1007/s10853-022-07591-0
-
[51]
(51) Wei, L. W.; Liu, S. H.; Wang, H. P. ACS Appl. Mater. Interfaces 2023, 15, 25473. doi:10.1021/acsami.3c02383
-
[52]
(52) Dong, Z.; Zhou, J.; Zhang, Z.; Jiang, Y.; Zhou, R.; Yao, C. ACS Appl. Energy Mater. 2022, 5, 10076. doi:10.1021/acsaem.2c01760
-
[53]
(53) Cui, L.; Hu, L.; Shen, Q.; Liu, X.; Jia, H.; Xue, J. Appl. Surf. Sci. 2022, 581, 152343. doi:10.1016/j.apsusc.2021.152343
-
[54]
(54) Sun, Z.; Fang, W.; Zhao, L.; Chen, H.; He, X.; Li, W.; Tian, P.; Huang, Z. Environ. Int. 2019, 130, 104898. doi:10.1016/j.envint.2019.06.008
-
[55]
(55) Chang, P.; Tseng, I. H. J. CO2 Util. 2018, 26, 511. doi:10.1016/j.jcou.2018.06.009
-
[56]
(56) Xiao, Y.; Men, C.; Chu, B.; Qin, Z.; Ji, H.; Chen, J.; Su, T. Chem. Eng. J. 2022, 446, 137028. doi:10.1016/j.cej.2022.137028
-
[57]
(57) Zhu, K.; Zhu, Q.; Jiang, M.; Zhang, Y.; Shao, Z.; Geng, Z.; Wang, X.; Zeng, H.; Wu, X.; Zhang, W.; et al. Angew. Chem. Int. Ed. 2022, 61, 202207600. doi:10.1002/anie.202207600
-
[58]
(58) Zhang, H. X.; Hong, Q. L.; Li, J.; Wang, F.; Huang, X.; Chen, S.; Tu, W.; Yu, D.; Xu, R.; Zhou, T.; et al. Angew. Chem. Int. Ed. 2019, 58, 11752. doi:10.1002/anie.201905869
-
[59]
(59) Hu, Z.; Liu, W. ACS Appl. Mater. Interfaces 2020, 12, 51366. doi:10.1021/acsami.0c13323
-
[60]
(60) Cao, H.; Xue, J.; Wang, Z.; Dong, J.; Li, W.; Wang, R.; Sun, S.; Gao, C.; Tan, Y.; Zhu, X.; et al. J. Mater. Chem. A 2021, 9, 16339. doi:10.1039/d1ta03615g
-
[61]
(61) Wang, M.; Shen, M.; Jin, X.; Tian, J.; Li, M.; Zhou, Y.; Zhang, L.; Li, Y.; Shi, J. ACS Catal. 2019, 9, 4573. doi:10.1021/acscatal.8b03975
-
[62]
(62) Bao, X.; Zhang, M.; Wang, Z.; Dai, D.; Wang, P.; Cheng, H.; Liu, Y.; Zheng, Z.; Dai, Y.; Huang, B. Chem. Eng. J. 2022, 445, 136718. doi:10.1016/j.cej.2022.136718
-
[63]
(63) Zeng, Z.; Huang, H.; Fu, Z.; Lai, H.; Long, B.; Ali, A.; Song, T.; Deng, G.-J. Appl. Surf. Sci. 2021, 550, 149361. doi:10.1016/j.apsusc.2021.149361
-
[64]
(64) Sun, Z.; Fang, W.; Zhao, L.; Wang, H. Appl. Surf. Sci. 2020, 504, 144347. doi:10.1016/j.apsusc.2019.144347
-
[65]
(65) Shi, G.; Yang, L.; Liu, Z.; Chen, X.; Zhou, J.; Yu, Y. Appl. Surf. Sci. 2018, 427, 1165. doi:10.1016/j.apsusc.2017.08.148
-
[66]
(66) Lai, H.; Xiao, W.; Wang, Y.; Song, T.; Long, B.; Yin, S.; Ali, A.; Deng, G. Chem. Eng. J. 2021, 417, 129295. doi:10.1016/j.cej.2021.129295
-
[67]
(67) Tang, G.; Hou, L.; Li, J.; Song, T.; Li, J.; Yue, P.; Long, B.; Ali, A.; Deng, G. J. J. Colloid Interface Sci. 2021, 603, 530. doi:10.1016/j.jcis.2021.06.127
-
[68]
(68) He, L.; Zhang, W.; Zhao, K.; Liu, S.; Zhao, Y. J. Mater. Chem. A 2022, 10, 4758. doi:10.1039/d1ta10514k
-
[69]
(69) Bashal, A. H.; Alkanad, K.; Al-Ghorbani, M.; Ben Aoun, S.; Bajiri, M. A. J. Environ. Chem. Eng. 2023, 11, 109545. doi:10.1016/j.jece.2023.109545
-
[70]
(70) Li, X.; Wang, Z.; Zhang, J.; Dai, K.; Fan, K.; Dawson, G. Mater. Today Phys. 2022, 26, 100729. doi:10.1016/j.mtphys.2022.100729
-
[71]
(71) In, S. I.; Vaughn, D. D.; Schaak, R. E. Angew. Chem. Int. Ed. 2012, 51, 3915. doi:10.1002/anie.201108936
-
[72]
(72) Duan, J.; Sun, P.; Zhao, H.; Ji, Z.; Zhang, D.; Wang, W. Opt. Mater. 2021, 115, 111016. doi:10.1016/j.optmat.2021.111016
-
[73]
(73) Xiang, T.; Xin, F.; Zhao, C.; Lou, S.; Qu, W.; Wang, Y.; Song, Y.; Zhang, S.; Yin, X. J. Colloid Interf. Sci. 2018, 518, 34. doi:10.1016/j.jcis.2018.01.109
-
[74]
(74) Li, N.; Liu, X.; Zhou, J.; Chen, W.; Liu, M. Chem. Eng. J. 2020, 399, 125782. doi:10.1016/j.cej.2020.125782
-
[75]
(75) Nogueira, A. E.; Silva, G. T. S. T.; Oliveira, J. A.; Lopes, O. F.; Torres, J. A.; Carmo, M.; Ribeiro, C. ACS Appl. Energy Mater. 2020, 3, 7629. doi:10.1021/acsaem.0c01047
-
[76]
(76) Zhang, M.; Zhao, K.; Xiong, J.; Wei, Y.; Han, C.; Li, W.; Cheng, G. Sustain. Energy Fuels 2020, 4, 2593. doi:10.1039/d0se00034e
-
[77]
(77) Song, Y.; Ye, C.; Yu, X.; Tang, J.; Zhao, Y.; Cai, W. Appl. Surf. Sci. 2022, 583, 152463. doi:10.1016/j.apsusc.2022.152463
-
[78]
(78) Yendrapati Taraka, T. P.; Gautam, A.; Jain, S. L.; Bojja, S.; Pal, U. J. CO2 Util. 2019, 31, 207. doi:10.1016/j.jcou.2019.03.012
-
[79]
(79) Zhang, Y.; Li, J.; Zhou, W.; Liu, X.; Song, X.; Chen, S.; Wang, H.; Huo, P. Appl. Catal. B: Environ. 2024, 342, 123449. doi:10.1016/j.apcatb.2023.123449
-
[80]
(80) Mandal, A.; Bhattacharya, G.; Kargupta, K. J. Mater. Res. 2024, 39, 1935. doi:10.1557/s43578-024-01352-2
-
[81]
(81) Kim, H. R.; Razzaq, A.; Grimes, C. A.; In, S. J. CO2 Util. 2017, 20, 91. doi:10.1016/j.jcou.2017.05.008
-
[82]
(82) Wu, Y. A.; McNulty, I.; Liu, C.; Lau, K. C.; Liu, Q.; Paulikas, A. P.; Sun, C. J.; Cai, Z.; Guest, J. R.; Ren, Y.; et al. Nat. Energy 2019, 4, 957. doi:10.1038/s41560-019-0490-3
-
[83]
(83) Deng, Y.; Wan, C.; Li, C.; Wang, Y.; Mu, X.; Liu, W.; Huang, Y.; Wong, P. K.; Ye, L. ACS Catal. 2022, 12, 4526. doi:10.1021/acscatal.2c00167
-
[84]
(84) Yu, L.; Li, G.; Zhang, X.; Ba, X.; Shi, G.; Li, Y.; Wong, P. K.; Yu, J. C.; Yu, Y. ACS Catal. 2016, 6, 6444. doi:10.1021/acscatal.6b01455
-
[85]
(85) Liu, S.; Lu, J.; Pu, Y.; Fan, H. J. CO2 Util. 2019, 33, 171. doi:10.1016/j.jcou.2019.05.020
-
[86]
(86) Zeng, Z.; Yan, Y.; Chen, J.; Zan, P.; Tian, Q.; Chen, P. Adv. Funct. Mater. 2019, 29, 1806500. doi:10.1002/adfm.201806500
-
[87]
(87) Yu, L.; Ba, X.; Qiu, M.; Li, Y.; Shuai, L.; Zhang, W.; Ren, Z.; Yu, Y. Nano Energy 2019, 60, 576. doi:10.1016/j.nanoen.2019.03.083
-
[88]
(88) Zhou, J.; Li, Y.; Yu, L.; Li, Z.; Xie, D.; Zhao, Y.; Yu, Y. Chem. Eng. J. 2020, 385, 123940. doi:10.1016/j.cej.2019.123940
-
[89]
(89) Tang, Z.; He, W.; Wang, Y.; Wei, Y.; Yu, X.; Xiong, J.; Wang, X.; Zhang, X.; Zhao, Z.; Liu, J. Appl. Catal. B: Environ. 2022, 311, 121371. doi:10.1016/j.apcatb.2022.121371
-
[90]
(90) Bi, F.; Ehsan, M. F.; Liu, W.; He, T. Chin. J. Chem. 2015, 33, 112. doi:10.1002/cjoc.201400476
-
[91]
(91) Li, F.; Zhang, L.; Tong, J.; Liu, Y.; Xu, S.; Cao, Y.; Cao, S. Nano Energy 2016, 27, 320. doi:10.1016/j.nanoen.2016.06.056
-
[92]
(92) Yan, C.; Xu, M.; Cao, W.; Chen, Q.; Song, X.; Huo, P.; Zhou, W.; Wang, H. J. Environ. Chem. Eng. 2023, 11, 111479. doi:10.1016/j.jece.2023.111479
-
[93]
(93) Shi, W.; Wang, J. C.; Chen, A.; Xu, X.; Wang, S.; Li, R.; Zhang, W.; Hou, Y. Nanomaterials 2022, 12, 2284. doi:10.3390/nano12132284
-
[94]
(94) Shown, I.; Hsu, H.; Chang, Y.; Lin, C.; Roy, P. K.; Ganguly, A.; Wang, C.; Chang, J.; Wu, C.; Chen, L.; et al. Nano Lett. 2014, 14, 6097. doi:10.1021/nl503609v
-
[95]
(95) Li, L.; Zhang, Z. Chem. Eng. J. 2022, 434, 134811. doi:10.1016/j.cej.2022.134811
-
[96]
(96) Xiong, J.; Zhang, M.; Lu, M.; Zhao, K.; Han, C.; Cheng, G.; Wen, Z. Chin. Chem. Lett. 2022, 33, 1313. doi:10.1016/j.cclet.2021.07.052
-
[97]
(97) Liu, E.; Qi, L.; Bian, J.; Chen, Y.; Hu, X.; Fan, J.; Liu, H.; Zhu, C.; Wang, Q. Mater. Res. Bull. 2015, 68, 203. doi:10.1016/j.materresbull.2015.03.064
-
[98]
(98) Su, T. M.; Tian, H.; Qin, Z. Z.; Ji, H. B. Appl. Catal. B: Environ. 2017, 202, 364. doi:10.1016/j.apcatb.2016.09.035
-
[99]
(99) Zhang, T.; Low, J.; Huang, X.; Al‐Sharab, J. F.; Yu, J.; Asefa, T. ChemCatChem 2017, 9, 3054. doi:10.1002/cctc.201700512
-
[100]
(100) Adekoya, D. O.; Tahir, M.; Amin, N. A. S. J. CO2 Util. 2017, 18, 261. doi:10.1016/j.jcou.2017.02.004
-
[101]
(101) Jin, J.; Luo, J.; Zan, L.; Peng, T. Chemphyschem 2017, 18, 3230. doi:10.1002/cphc.201700563
-
[102]
(102) Kang, Q.; Wang, T.; Li, P.; Liu, L.; Chang, K.; Li, M.; Ye, J. Angew. Chem. Int. Ed. 2015, 54, 841. doi:10.1002/anie.201409183
-
[103]
(103) Kumar, S.; Hassan, I.; Regue, M.; Gonzalez-Carrero, S.; Rattner, E.; Isaacs, M. A.; Eslava, S. J. Mater. Chem. A 2021, 9, 12179. doi:10.1039/d1ta01281a
-
[1]
-
-
[1]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[2]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[3]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[4]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[5]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[6]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[7]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[8]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[9]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[10]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[11]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[12]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[13]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[14]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[15]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[16]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[17]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[18]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[19]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[20]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[1]
Metrics
- PDF Downloads(5)
- Abstract views(78)
- HTML views(15)