Citation: Zhiquan Zhang, Baker Rhimi, Zheyang Liu, Min Zhou, Guowei Deng, Wei Wei, Liang Mao, Huaming Li, Zhifeng Jiang. Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240602. doi: 10.3866/PKU.WHXB202406029 shu

Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion

  • Corresponding author: Wei Wei, weiwei@ujs.edu.cn Liang Mao, maoliang@cumt.edu.cn Zhifeng Jiang, jiangzf@ujs.edu.cn
  • Received Date: 24 June 2024
    Revised Date: 10 August 2024
    Accepted Date: 11 August 2024
    Available Online: 22 August 2024

    Fund Project: the National Natural Science Foundation of China 22178149Natural Science Foundation of Jiangsu Province for Outstanding Youth Scientists BK20211599China Postdoctoral Science Foundation 2023M731421Key R&D Project of Zhenjiang City CQ2022001Opening Project of Structural Optimization and Application of Functional Molecules Key Laboratory of Sichuan Province 2023GNFZ-01

  • Utilizing sunlight as a renewable energy source, photocatalysis offers a potential solution to global warming and energy shortages by converting CO2 into useful solar fuels, including CO, CH4, CH3OH, and C2H5OH. Among the various formulations investigated, copper-based photocatalysts stand out as particularly appealing for CO2 conversion due to their cost-effectiveness and higher abundance in comparison to catalysts based on precious metals. This literature review provides a thorough summary of the latest developments in copper-based photocatalysts used for CO2 reduction reactions, including metallic copper, copper oxide, and cuprous oxide photocatalysts. The review also provides a categorical summary of the CO2 reduction products and a detailed categorical discussion of the means of modulation and modification of each copper-based catalyst. Finally, this review highlights the existing challenges and proposes future research directions in the development of copper-based photocatalysts for CO2 reduction, focusing on boosting energy utilization and improving product formation rates.
  • 加载中
    1. [1]

      Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. J. Am. Chem. Soc. 2020, 142, 9567. doi: 10.1021/jacs.0c02973  doi: 10.1021/jacs.0c02973

    2. [2]

      Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37, 2009030. doi: 10.3866/pku.Whxb202009030  doi: 10.3866/pku.Whxb202009030

    3. [3]

      Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi: 10.3866/pku.Whxb202309031  doi: 10.3866/pku.Whxb202309031

    4. [4]

      Zhou, M.; Wang, H; Liu, R.; Liu, Z.; Xiao, X.; Li, W.; Gao, C.; Lu, Z.; Jiang, Z.; Shi, W.; Xiong, Y. Angew. Chem. Int. Ed. 2024, e202407468. doi: 10.1002/anie.202407468  doi: 10.1002/anie.202407468

    5. [5]

      Chen, T.; Zhou, M.; Zhang, Z.; Yang, K.; Fu, X.; Li, H.; Shi, W.; Jiang, Z. Chem. Eng. Sci. 2024, 285, 11 9546. doi: 10.1016/j.ces.2023.119546  doi: 10.1016/j.ces.2023.119546

    6. [6]

      Huang, N.; He, H.; Liu, S.; Zhu, H.; Li, Y.; Xu, J.; Huang, J.; Wang, X.; Liao, P.; Chen, X. J. Am. Chem. Soc. 2021, 143, 17424. doi: 10.1021/jacs.1c05839  doi: 10.1021/jacs.1c05839

    7. [7]

      Rhimi, B.; Zhou, M.; Yan, Z.; Cai, X.; Jiang, Z. Nano-Micro Lett. 2024, 16, 64. doi: 10.1007/s40820-023-01276-2  doi: 10.1007/s40820-023-01276-2

    8. [8]

      Xiao, X.; Liu, Z.; Zhou, M.; Zhang, W.; Fu, X.; Li, H.; Jiang, Z. Chem. Eng. J. 2024, 479, 147560. doi: 10.1016/j.cej.2023.147560  doi: 10.1016/j.cej.2023.147560

    9. [9]

      Liang, J.; Zhang, W.; Liu, Z.; Song, Q.; Zhu, Z.; Guan, Z.; Wang, H.; Zhang, P.; Li, J.; Zhou, M.; et al. ACS Catal. 2022, 12, 12217. doi: 10.1021/acscatal.2c03970  doi: 10.1021/acscatal.2c03970

    10. [10]

      Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi: 10.1002/adma.202300643  doi: 10.1002/adma.202300643

    11. [11]

      Dong, J.; Ji, S.; Zhang, Y.; Ji, M.; Wang, B.; Li, Y.; Chen, Z.; Xia, J.; Li, H. Acta Phys. -Chim. Sin. 2023, 39, 2212011. doi: 10.3866/PKU.WHXB202212011  doi: 10.3866/PKU.WHXB202212011

    12. [12]

      Liu, G.; Li, L.; Wang, B.; Shan, N.; Dong, J.; Ji, M.; Zhu, W.; K. Chu, P.; Xia, J.; Li, H. Acta Phys. -Chim. Sin. 2024, 40, 2306041. doi: 10.3866/PKU.WHXB202306041  doi: 10.3866/PKU.WHXB202306041

    13. [13]

      Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470  doi: 10.1002/adfm.202214470

    14. [14]

      Li, G.; Sun, Y.; Zhang, Q.; Gao, Z.; Sun, W.; Zhou, X. Chem. Eng. J. 2021, 410, 128397. doi: 10.1016/j.cej.2020.128397  doi: 10.1016/j.cej.2020.128397

    15. [15]

      Wang, H.; Zhang, L.; Zhou, Y.; Qiao, S.; Liu, X.; Wang, W. Appl. Catal. B: Environ. 2020, 263, 118331. doi: 10.1016/j.apcatb.2019.118331  doi: 10.1016/j.apcatb.2019.118331

    16. [16]

      Zhu, Y.; Gao, C.; Bai, S.; Chen, S.; Long, R.; Song, L.; Li, Z.; Xiong, Y. Nano Res. 2017, 10, 3396-3406. doi: 10.1007/s12274-017-1552-0  doi: 10.1007/s12274-017-1552-0

    17. [17]

      Xin, Y.; Yu, K.; Zhang, L.; Yang, Y.; Yuan, H.; Li, H.; Wang, L.; Zeng, J. Adv. Mater. 2021, 33, 2008145. doi: 10.1002/adma.202008145  doi: 10.1002/adma.202008145

    18. [18]

      Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116, 3722. doi: 10.1021/acs.chemrev.5b00482  doi: 10.1021/acs.chemrev.5b00482

    19. [19]

      Wang, W.; Wang, L.; Su, W.; Xing, Y. J. CO2 Util. 2022, 61, 102056. doi: 10.1016/j.jcou.2022.102056  doi: 10.1016/j.jcou.2022.102056

    20. [20]

      Jiang, W.; Loh, H.; Low, B. Q. L.; Zhu, H.; Low, J.; Heng, J. Z. X.; Tang, K. Y.; Li, Z.; Loh, X. J.; Ye, E.; et al. Appl. Catal. B: Environ. 2023, 321, 122079. doi: 10.1016/j.apcatb.2022.122079  doi: 10.1016/j.apcatb.2022.122079

    21. [21]

      Zhong, K.; Sun, P.; Xu, H. Small 2024, 2310677. doi: 10.1002/smll.202310677  doi: 10.1002/smll.202310677

    22. [22]

      Guo, R. T.; Wang, J.; Bi, Z. X.; Chen, X.; Hu, X.; Pan, W. G. Small 2023, 19, 2206314. doi: 10.1002/smll.202206314  doi: 10.1002/smll.202206314

    23. [23]

      Ran, J.; Jaroniec, M.; Qiao, S. Z. Adv. Mater. 2018, 30, 1704649. doi: 10.1002/adma.201704649  doi: 10.1002/adma.201704649

    24. [24]

      Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Mater. Today 2020, 32, 222. doi: 10.1016/j.mattod.2019.06.009  doi: 10.1016/j.mattod.2019.06.009

    25. [25]

      Khalil, M.; Gunlazuardi, J.; Ivandini, T. A.; Umar, A. Renew. Sust. Energy Rev. 2019, 113, 109246. doi: 10.1016/j.rser.2019.109246  doi: 10.1016/j.rser.2019.109246

    26. [26]

      Gong, E.; Ali, S.; Hiragond, C. B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S.-I. Energ. Environ. Sci. 2022, 15, 880. doi: 10.1039/d1ee02714j  doi: 10.1039/d1ee02714j

    27. [27]

      Ji, Y.; Luo, Y. ACS Catal. 2016, 6, 2018. doi: 10.1021/acscatal.5b02694  doi: 10.1021/acscatal.5b02694

    28. [28]

      Vahidzadeh, E.; Zeng, S.; Manuel, A. P.; Riddell, S.; Kumar, P.; Alam, K. M.; Shankar, K. ACS Appl. Mater. Interfaces 2021, 13, 7248. doi: 10.1021/acsami.0c21067  doi: 10.1021/acsami.0c21067

    29. [29]

      Ou, H.; Li, G.; Ren, W.; Pan, B.; Luo, G.; Hu, Z.; Wang, D.; Li, Y. J. Am. Chem. Soc. 2022, 144, 22075. doi: 10.1021/jacs.2c09424  doi: 10.1021/jacs.2c09424

    30. [30]

      Ali, S.; Razzaq, A.; Kim, H.; In, S. Chem. Eng. J. 2022, 429, 131579. doi: 10.1016/j.cej.2021.131579  doi: 10.1016/j.cej.2021.131579

    31. [31]

      Qian, X.; Zhang, L.; Lin, Y.; Wang, M.; Wang, X.; Su, W. Appl. Surf. Sci. 2021, 568. doi: 10.1016/j.apsusc.2021.150985  doi: 10.1016/j.apsusc.2021.150985

    32. [32]

      Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi: 10.1038/s41467-024-49004-7  doi: 10.1038/s41467-024-49004-7

    33. [33]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem. 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    34. [34]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    35. [35]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, 202218688. doi: 10.1002/anie.202218688  doi: 10.1002/anie.202218688

    36. [36]

      Zhang, Z.; Li, X.; Tang, H.; Wu, J.; Yao, C.; Li, K. Chinese Chem. Lett. 2024, 109700. doi: 10.1016/j.cclet.2024.109700  doi: 10.1016/j.cclet.2024.109700

    37. [37]

      Li, L.; Guo, C.; Li, T.; Yang, C.; Chen, F.; Wang, W.; Yan, R.; Ning, J.; Hu, Y. Appl. Surf. Sci. 2024, 651, 159220. doi: 10.1016/j.apsusc.2023.159220  doi: 10.1016/j.apsusc.2023.159220

    38. [38]

      Shi, W.; Qiao, X.; Wang, J.; Zhao, M.; Ge, H.; Ma, J.; Liu, S.; Zhang, W. Nanomaterials 2022, 12, 3247. doi: 10.3390/nano12183247  doi: 10.3390/nano12183247

    39. [39]

      Liu, X.; Wu, Y.; Li, Y.; Yang, X.; Ma, Q.; Luo, J. Chem. Eng. J. 2024, 485, 149855. doi: 10.1016/j.cej.2024.149855  doi: 10.1016/j.cej.2024.149855

    40. [40]

      Zhang, Z.; Liang, J.; Zhang, W.; Zhou, M.; Zhu, X.; Liu, Z.; Li, Y.; Guan, Z.; Lee, C.-S.; Wong, P. K.; et al. Appl. Catal. B: Environ. 2023, 330, 122621. doi: 10.1016/j.apcatb.2023.122621  doi: 10.1016/j.apcatb.2023.122621

    41. [41]

      Jiang, Z.; Zhang, Z.; Liang, J.; Zhou, M.; Liu, D.; Mao, D.; Zhang, Q.; Zhang, W.; Li, H.; Song, L.; et al. Adv. Funct. Mater. 2023, 33, 2301785. doi: 10.1002/adfm.202301785  doi: 10.1002/adfm.202301785

    42. [42]

      Fang, B.; Xing, Y.; Bonakdarpour, A.; Zhang, S.; Wilkinson, D. P. ACS Sustain. Chem. Eng. 2015, 3, 2381. doi: 10.1021/acssuschemeng.5b00724  doi: 10.1021/acssuschemeng.5b00724

    43. [43]

      Wang, W. N.; Wu, F.; Myung, Y.; Niedzwiedzki, D. M.; Im, H. S.; Park, J.; Banerjee, P.; Biswas, P. ACS Appl. Mater. Interfaces 2015, 7, 5685. doi: 10.1021/am508590j  doi: 10.1021/am508590j

    44. [44]

      Jiang, H.; Katsumata, K.-i.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A. Appl. Catal. B: Environ. 2018, 224, 783. doi: 10.1016/j.apcatb.2017.11.011  doi: 10.1016/j.apcatb.2017.11.011

    45. [45]

      Zhu, Q.; Zhu, K.; Cai, M.; Zhang, Y.; Shao, Z.; Jiang, M.; Wang, X.; Geng, Z.; Wu, X.; Li, M.; et al. Nano Res. 2022, 15, 7099. doi: 10.1007/s12274-022-4397-0  doi: 10.1007/s12274-022-4397-0

    46. [46]

      Dong, W.; Jia, J.; Wang, Y.; An, J.; Yang, O.; Gao, X.; Liu, Y.; Zhao, J.; Li, D. Chem. Eng. J. 2022, 438, 135622. doi: 10.1016/j.cej.2022.135622  doi: 10.1016/j.cej.2022.135622

    47. [47]

      Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Adv. Mater. 2017, 29, 1601694. doi: 10.1002/adma.201601694  doi: 10.1002/adma.201601694

    48. [48]

      Barrocas, B. T.; Ambrozova, N.; Koci, K. Materials 2022, 15, 967. doi: 10.3390/ma15030967  doi: 10.3390/ma15030967

    49. [49]

      Dai, B.; Zhao, W.; Wei, W.; Cao, J.; Yang, G.; Li, S.; Sun, C.; Leung, D. Y. C. Carbon 2022, 193, 272. doi: 10.1016/j.carbon.2022.03.038  doi: 10.1016/j.carbon.2022.03.038

    50. [50]

      Liu, J.; Qi, F.; Zhang, N.; Yang, J.; Liang, Z.; Tian, C.; Zhang, W.; Tang, X.; Wu, D.; Huang, Q. J. Mater. Sci. 2022, 57, 15474. doi: 10.1007/s10853-022-07591-0  doi: 10.1007/s10853-022-07591-0

    51. [51]

      Wei, L. W.; Liu, S. H.; Wang, H. P. ACS Appl. Mater. Interfaces 2023, 15, 25473. doi: 10.1021/acsami.3c02383  doi: 10.1021/acsami.3c02383

    52. [52]

      Dong, Z.; Zhou, J.; Zhang, Z.; Jiang, Y.; Zhou, R.; Yao, C. ACS Appl. Energy Mater. 2022, 5, 10076. doi: 10.1021/acsaem.2c01760  doi: 10.1021/acsaem.2c01760

    53. [53]

      Cui, L.; Hu, L.; Shen, Q.; Liu, X.; Jia, H.; Xue, J. Appl. Surf. Sci. 2022, 581, 152343. doi: 10.1016/j.apsusc.2021.152343  doi: 10.1016/j.apsusc.2021.152343

    54. [54]

      Sun, Z.; Fang, W.; Zhao, L.; Chen, H.; He, X.; Li, W.; Tian, P.; Huang, Z. Environ. Int. 2019, 130, 104898. doi: 10.1016/j.envint.2019.06.008  doi: 10.1016/j.envint.2019.06.008

    55. [55]

      Chang, P.; Tseng, I. H. J. CO2 Util. 2018, 26, 511. doi: 10.1016/j.jcou.2018.06.009  doi: 10.1016/j.jcou.2018.06.009

    56. [56]

      Xiao, Y.; Men, C.; Chu, B.; Qin, Z.; Ji, H.; Chen, J.; Su, T. Chem. Eng. J. 2022, 446, 137028. doi: 10.1016/j.cej.2022.137028  doi: 10.1016/j.cej.2022.137028

    57. [57]

      Zhu, K.; Zhu, Q.; Jiang, M.; Zhang, Y.; Shao, Z.; Geng, Z.; Wang, X.; Zeng, H.; Wu, X.; Zhang, W.; et al. Angew. Chem. Int. Ed. 2022, 61, 202207600. doi: 10.1002/anie.202207600  doi: 10.1002/anie.202207600

    58. [58]

      Zhang, H. X.; Hong, Q. L.; Li, J.; Wang, F.; Huang, X.; Chen, S.; Tu, W.; Yu, D.; Xu, R.; Zhou, T.; et al. Angew. Chem. Int. Ed. 2019, 58, 11752. doi: 10.1002/anie.201905869  doi: 10.1002/anie.201905869

    59. [59]

      Hu, Z.; Liu, W. ACS Appl. Mater. Interfaces 2020, 12, 51366. doi: 10.1021/acsami.0c13323  doi: 10.1021/acsami.0c13323

    60. [60]

      Cao, H.; Xue, J.; Wang, Z.; Dong, J.; Li, W.; Wang, R.; Sun, S.; Gao, C.; Tan, Y.; Zhu, X.; et al. J. Mater. Chem. A 2021, 9, 16339. doi: 10.1039/d1ta03615g  doi: 10.1039/d1ta03615g

    61. [61]

      Wang, M.; Shen, M.; Jin, X.; Tian, J.; Li, M.; Zhou, Y.; Zhang, L.; Li, Y.; Shi, J. ACS Catal. 2019, 9, 4573. doi: 10.1021/acscatal.8b03975  doi: 10.1021/acscatal.8b03975

    62. [62]

      Bao, X.; Zhang, M.; Wang, Z.; Dai, D.; Wang, P.; Cheng, H.; Liu, Y.; Zheng, Z.; Dai, Y.; Huang, B. Chem. Eng. J. 2022, 445, 136718. doi: 10.1016/j.cej.2022.136718  doi: 10.1016/j.cej.2022.136718

    63. [63]

      Zeng, Z.; Huang, H.; Fu, Z.; Lai, H.; Long, B.; Ali, A.; Song, T.; Deng, G.-J. Appl. Surf. Sci. 2021, 550, 149361. doi: 10.1016/j.apsusc.2021.149361  doi: 10.1016/j.apsusc.2021.149361

    64. [64]

      Sun, Z.; Fang, W.; Zhao, L.; Wang, H. Appl. Surf. Sci. 2020, 504, 144347. doi: 10.1016/j.apsusc.2019.144347  doi: 10.1016/j.apsusc.2019.144347

    65. [65]

      Shi, G.; Yang, L.; Liu, Z.; Chen, X.; Zhou, J.; Yu, Y. Appl. Surf. Sci. 2018, 427, 1165. doi: 10.1016/j.apsusc.2017.08.148  doi: 10.1016/j.apsusc.2017.08.148

    66. [66]

      Lai, H.; Xiao, W.; Wang, Y.; Song, T.; Long, B.; Yin, S.; Ali, A.; Deng, G. Chem. Eng. J. 2021, 417, 129295. doi: 10.1016/j.cej.2021.129295  doi: 10.1016/j.cej.2021.129295

    67. [67]

      Tang, G.; Hou, L.; Li, J.; Song, T.; Li, J.; Yue, P.; Long, B.; Ali, A.; Deng, G. J. J. Colloid Interface Sci. 2021, 603, 530. doi: 10.1016/j.jcis.2021.06.127  doi: 10.1016/j.jcis.2021.06.127

    68. [68]

      He, L.; Zhang, W.; Zhao, K.; Liu, S.; Zhao, Y. J. Mater. Chem. A 2022, 10, 4758. doi: 10.1039/d1ta10514k  doi: 10.1039/d1ta10514k

    69. [69]

      Bashal, A. H.; Alkanad, K.; Al-Ghorbani, M.; Ben Aoun, S.; Bajiri, M. A. J. Environ. Chem. Eng. 2023, 11, 109545. doi: 10.1016/j.jece.2023.109545  doi: 10.1016/j.jece.2023.109545

    70. [70]

      Li, X.; Wang, Z.; Zhang, J.; Dai, K.; Fan, K.; Dawson, G. Mater. Today Phys. 2022, 26, 100729. doi: 10.1016/j.mtphys.2022.100729  doi: 10.1016/j.mtphys.2022.100729

    71. [71]

      In, S. I.; Vaughn, D. D.; Schaak, R. E. Angew. Chem. Int. Ed. 2012, 51, 3915. doi: 10.1002/anie.201108936  doi: 10.1002/anie.201108936

    72. [72]

      Duan, J.; Sun, P.; Zhao, H.; Ji, Z.; Zhang, D.; Wang, W. Opt. Mater. 2021, 115, 111016. doi: 10.1016/j.optmat.2021.111016  doi: 10.1016/j.optmat.2021.111016

    73. [73]

      Xiang, T.; Xin, F.; Zhao, C.; Lou, S.; Qu, W.; Wang, Y.; Song, Y.; Zhang, S.; Yin, X. J. Colloid Interf. Sci. 2018, 518, 34. doi: 10.1016/j.jcis.2018.01.109  doi: 10.1016/j.jcis.2018.01.109

    74. [74]

      Li, N.; Liu, X.; Zhou, J.; Chen, W.; Liu, M. Chem. Eng. J. 2020, 399, 125782. doi: 10.1016/j.cej.2020.125782  doi: 10.1016/j.cej.2020.125782

    75. [75]

      Nogueira, A. E.; Silva, G. T. S. T.; Oliveira, J. A.; Lopes, O. F.; Torres, J. A.; Carmo, M.; Ribeiro, C. ACS Appl. Energy Mater. 2020, 3, 7629. doi: 10.1021/acsaem.0c01047  doi: 10.1021/acsaem.0c01047

    76. [76]

      Zhang, M.; Zhao, K.; Xiong, J.; Wei, Y.; Han, C.; Li, W.; Cheng, G. Sustain. Energ. Fuels 2020, 4, 2593. doi: 10.1039/d0se00034e  doi: 10.1039/d0se00034e

    77. [77]

      Song, Y.; Ye, C.; Yu, X.; Tang, J.; Zhao, Y.; Cai, W. Appl. Surf. Sci. 2022, 583, 152463. doi: 10.1016/j.apsusc.2022.152463  doi: 10.1016/j.apsusc.2022.152463

    78. [78]

      Yendrapati Taraka, T. P.; Gautam, A.; Jain, S. L.; Bojja, S.; Pal, U. J. CO2 Util. 2019, 31, 207. doi: 10.1016/j.jcou.2019.03.012  doi: 10.1016/j.jcou.2019.03.012

    79. [79]

      Zhang, Y.; Li, J.; Zhou, W.; Liu, X.; Song, X.; Chen, S.; Wang, H.; Huo, P. Appl. Catal. B: Environ. 2024, 342, 123449. doi: 10.1016/j.apcatb.2023.123449  doi: 10.1016/j.apcatb.2023.123449

    80. [80]

      Mandal, A.; Bhattacharya, G.; Kargupta, K. J. Mater. Res. 2024, 39, 1935. doi: 10.1557/s43578-024-01352-2  doi: 10.1557/s43578-024-01352-2

    81. [81]

      Kim, H. R.; Razzaq, A.; Grimes, C. A.; In, S. J. CO2 Util. 2017, 20, 91. doi: 10.1016/j.jcou.2017.05.008  doi: 10.1016/j.jcou.2017.05.008

    82. [82]

      Wu, Y. A.; McNulty, I.; Liu, C.; Lau, K. C.; Liu, Q.; Paulikas, A. P.; Sun, C. J.; Cai, Z.; Guest, J. R.; Ren, Y.; et al. Nat. Energy 2019, 4, 957. doi: 10.1038/s41560-019-0490-3  doi: 10.1038/s41560-019-0490-3

    83. [83]

      Deng, Y.; Wan, C.; Li, C.; Wang, Y.; Mu, X.; Liu, W.; Huang, Y.; Wong, P. K.; Ye, L. ACS Catal. 2022, 12, 4526. doi: 10.1021/acscatal.2c00167  doi: 10.1021/acscatal.2c00167

    84. [84]

      Yu, L.; Li, G.; Zhang, X.; Ba, X.; Shi, G.; Li, Y.; Wong, P. K.; Yu, J. C.; Yu, Y. ACS Catal. 2016, 6, 6444. doi: 10.1021/acscatal.6b01455  doi: 10.1021/acscatal.6b01455

    85. [85]

      Liu, S.; Lu, J.; Pu, Y.; Fan, H. J. CO2 Util. 2019, 33, 171. doi: 10.1016/j.jcou.2019.05.020  doi: 10.1016/j.jcou.2019.05.020

    86. [86]

      Zeng, Z.; Yan, Y.; Chen, J.; Zan, P.; Tian, Q.; Chen, P. Adv. Funct. Mater. 2019, 29, 1806500. doi: 10.1002/adfm.201806500  doi: 10.1002/adfm.201806500

    87. [87]

      Yu, L.; Ba, X.; Qiu, M.; Li, Y.; Shuai, L.; Zhang, W.; Ren, Z.; Yu, Y. Nano Energy 2019, 60, 576. doi: 10.1016/j.nanoen.2019.03.083  doi: 10.1016/j.nanoen.2019.03.083

    88. [88]

      Zhou, J.; Li, Y.; Yu, L.; Li, Z.; Xie, D.; Zhao, Y.; Yu, Y. Chem. Eng. J. 2020, 385, 123940. doi: 10.1016/j.cej.2019.123940  doi: 10.1016/j.cej.2019.123940

    89. [89]

      Tang, Z.; He, W.; Wang, Y.; Wei, Y.; Yu, X.; Xiong, J.; Wang, X.; Zhang, X.; Zhao, Z.; Liu, J. Appl. Catal. B: Environ. 2022, 311, 121371. doi: 10.1016/j.apcatb.2022.121371  doi: 10.1016/j.apcatb.2022.121371

    90. [90]

      Bi, F.; Ehsan, M. F.; Liu, W.; He, T. Chin. J. Chem. 2015, 33, 112. doi: 10.1002/cjoc.201400476  doi: 10.1002/cjoc.201400476

    91. [91]

      Li, F.; Zhang, L.; Tong, J.; Liu, Y.; Xu, S.; Cao, Y.; Cao, S. Nano Energy 2016, 27, 320. doi: 10.1016/j.nanoen.2016.06.056  doi: 10.1016/j.nanoen.2016.06.056

    92. [92]

      Yan, C.; Xu, M.; Cao, W.; Chen, Q.; Song, X.; Huo, P.; Zhou, W.; Wang, H. J. Environ. Chem. Eng. 2023, 11, 111479. doi: 10.1016/j.jece.2023.111479  doi: 10.1016/j.jece.2023.111479

    93. [93]

      Shi, W.; Wang, J. C.; Chen, A.; Xu, X.; Wang, S.; Li, R.; Zhang, W.; Hou, Y. Nanomaterials 2022, 12, 2284. doi: 10.3390/nano12132284  doi: 10.3390/nano12132284

    94. [94]

      Shown, I.; Hsu, H.; Chang, Y.; Lin, C.; Roy, P. K.; Ganguly, A.; Wang, C.; Chang, J.; Wu, C.; Chen, L.; et al. Nano Lett. 2014, 14, 6097. doi: 10.1021/nl503609v  doi: 10.1021/nl503609v

    95. [95]

      Li, L.; Zhang, Z. Chem. Eng. J. 2022, 434, 134811. doi: 10.1016/j.cej.2022.134811  doi: 10.1016/j.cej.2022.134811

    96. [96]

      Xiong, J.; Zhang, M.; Lu, M.; Zhao, K.; Han, C.; Cheng, G.; Wen, Z. Chin. Chem. Lett. 2022, 33, 1313. doi: 10.1016/j.cclet.2021.07.052  doi: 10.1016/j.cclet.2021.07.052

    97. [97]

      Liu, E.; Qi, L.; Bian, J.; Chen, Y.; Hu, X.; Fan, J.; Liu, H.; Zhu, C.; Wang, Q. Mater. Res. Bull. 2015, 68, 203. doi: 10.1016/j.materresbull.2015.03.064  doi: 10.1016/j.materresbull.2015.03.064

    98. [98]

      Su, T. M.; Tian, H.; Qin, Z. Z.; Ji, H. B. Appl. Catal. B: Environ. 2017, 202, 364. doi: 10.1016/j.apcatb.2016.09.035  doi: 10.1016/j.apcatb.2016.09.035

    99. [99]

      Zhang, T.; Low, J.; Huang, X.; Al‐Sharab, J. F.; Yu, J.; Asefa, T. ChemCatChem 2017, 9, 3054. doi: 10.1002/cctc.201700512  doi: 10.1002/cctc.201700512

    100. [100]

      Adekoya, D. O.; Tahir, M.; Amin, N. A. S. J. CO2 Util. 2017, 18, 261. doi: 10.1016/j.jcou.2017.02.004  doi: 10.1016/j.jcou.2017.02.004

    101. [101]

      Jin, J.; Luo, J.; Zan, L.; Peng, T. Chemphyschem 2017, 18, 3230. doi: 10.1002/cphc.201700563  doi: 10.1002/cphc.201700563

    102. [102]

      Kang, Q.; Wang, T.; Li, P.; Liu, L.; Chang, K.; Li, M.; Ye, J. Angew. Chem. Int. Ed. 2015, 54, 841. doi: 10.1002/anie.201409183  doi: 10.1002/anie.201409183

    103. [103]

      Kumar, S.; Hassan, I.; Regue, M.; Gonzalez-Carrero, S.; Rattner, E.; Isaacs, M. A.; Eslava, S. J. Mater. Chem. A 2021, 9, 12179. doi: 10.1039/d1ta01281a  doi: 10.1039/d1ta01281a

  • 加载中
    1. [1]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    4. [4]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    5. [5]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    6. [6]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    8. [8]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    11. [11]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    12. [12]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    13. [13]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    18. [18]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

Metrics
  • PDF Downloads(22)
  • Abstract views(1346)
  • HTML views(175)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return