Citation: Zhiquan Zhang,  Baker Rhimi,  Zheyang Liu,  Min Zhou,  Guowei Deng,  Wei Wei,  Liang Mao,  Huaming Li,  Zhifeng Jiang. Insights into the Development of Copper-based Photocatalysts for CO2 Conversion[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240602. doi: 10.3866/PKU.WHXB202406029 shu

Insights into the Development of Copper-based Photocatalysts for CO2 Conversion

  • Corresponding author: Wei Wei,  Liang Mao,  Zhifeng Jiang, 
  • Received Date: 24 June 2024
    Revised Date: 10 August 2024
    Accepted Date: 11 August 2024

    Fund Project: This project was supported by the National Natural Science Foundation of China (22178149,), Jiangsu Distinguished Professor Program, Natural Science Foundation of Jiangsu Province for Outstanding Youth Scientists (BK20211599), China Postdoctoral Science Foundation (2023M731421), Key R&D Project of Zhenjiang City (CQ2022001), Opening Project of Structural Optimization and Application of Functional Molecules Key Laboratory of Sichuan Province (2023GNFZ-01).

  • Utilizing sunlight as a renewable energy source, photocatalysis offers a potential solution to global warming and energy shortages by converting CO2 into useful solar fuels, including CO, CH4, CH3OH, and C2H5OH. Among the various formulations investigated, copper-based photocatalysts stand out as particularly appealing for CO2 conversion due to their cost-effectiveness and higher abundance in comparison to catalysts based on precious metals. This literature review provides a thorough summary of the latest developments in copper-based photocatalysts used for CO2 reduction reactions, including metallic copper, copper oxide, and cuprous oxide photocatalysts. The review also provides a categorical summary of the CO2 reduction products and a detailed categorical discussion of the means of modulation and modification of each copper-based catalyst. Finally, this review highlights the existing challenges and proposes future research directions in the development of copper-based photocatalysts for CO2 reduction, focusing on boosting energy utilization and improving product formation rates.
  • 加载中
    1. [1]

      (1) Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. J. Am. Chem. Soc. 2020, 142, 9567. doi:10.1021/jacs.0c02973

    2. [2]

      (2) Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37, 2009030. doi:10.3866/pku.Whxb202009030

    3. [3]

      (3) Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi:10.3866/pku.Whxb202309031

    4. [4]

      (4) Zhou, M.; Wang, H.; Liu, R.; Liu, Z.; Xiao, X.; Li, W.; Gao, C.; Lu, Z.; Jiang, Z.; Shi, W.; et al. Angew. Chem. Int. Ed. 2024, e202407468. doi:10.1002/anie.202407468

    5. [5]

      (5) Chen, T.; Zhou, M.; Zhang, Z.; Yang, K.; Fu, X.; Li, H.; Shi, W.; Jiang, Z. Chem. Eng. Sci. 2024, 285, 119546. doi:10.1016/j.ces.2023.119546

    6. [6]

      (6) Huang, N.; He, H.; Liu, S.; Zhu, H.; Li, Y.; Xu, J.; Huang, J.; Wang, X.; Liao, P.; Chen, X. J. Am. Chem. Soc. 2021, 143, 17424. doi:10.1021/jacs.1c05839

    7. [7]

      (7) Rhimi, B.; Zhou, M.; Yan, Z.; Cai, X.; Jiang, Z. Nano-Micro Lett. 2024, 16, 64. doi:10.1007/s40820-023-01276-2

    8. [8]

      (8) Xiao, X.; Liu, Z.; Zhou, M.; Zhang, W.; Fu, X.; Li, H.; Jiang, Z. Chem. Eng. J. 2024, 479, 147560. doi:10.1016/j.cej.2023.147560

    9. [9]

      (9) Liang, J.; Zhang, W.; Liu, Z.; Song, Q.; Zhu, Z.; Guan, Z.; Wang, H.; Zhang, P.; Li, J.; Zhou, M.; et al. ACS Catal. 2022, 12, 12217. doi:10.1021/acscatal.2c03970

    10. [10]

      (10) Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi:10.1002/adma.202300643

    11. [11]

      (11) Dong, J.; Ji, S.; Zhang, Y.; Ji, M.; Wang, B.; Li, Y.; Chen, Z.; Xia, J.; Li, H. Acta Phys. -Chim. Sin. 2023, 39, 2212011. doi:10.3866/PKU.WHXB202212011

    12. [12]

      (12) Liu, G.; Li, L.; Wang, B.; Shan, N.; Dong, J.; Ji, M.; Zhu, W.; Chu, P. K.; Xia, J.; Li, H. Acta Phys. -Chim. Sin. 2024, 40, 2306041. doi:10.3866/PKU.WHXB202306041

    13. [13]

      (13) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi:10.1002/adfm.202214470

    14. [14]

      (14) Li, G.; Sun, Y.; Zhang, Q.; Gao, Z.; Sun, W.; Zhou, X. Chem. Eng. J. 2021, 410, 128397. doi:10.1016/j.cej.2020.128397

    15. [15]

      (15) Wang, H.; Zhang, L.; Zhou, Y.; Qiao, S.; Liu, X.; Wang, W. Appl. Catal. B: Environ. 2020, 263, 118331. doi:10.1016/j.apcatb.2019.118331

    16. [16]

      (16) Zhu, Y.; Gao, C.; Bai, S.; Chen, S.; Long, R.; Song, L.; Li, Z.; Xiong, Y. Nano Res. 2017, 10, 3396. doi:10.1007/s12274-017-1552-0

    17. [17]

      (17) Xin, Y.; Yu, K.; Zhang, L.; Yang, Y.; Yuan, H.; Li, H.; Wang, L.; Zeng, J. Adv. Mater. 2021, 33, 2008145. doi:10.1002/adma.202008145

    18. [18]

      (18) Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. S. Chem. Rev. 2016, 116, 3722. doi:10.1021/acs.chemrev.5b00482

    19. [19]

      (19) Wang, W.; Wang, L.; Su, W.; Xing, Y. J. CO2 Util. 2022, 61, 102056. doi:10.1016/j.jcou.2022.102056

    20. [20]

      (20) Jiang, W.; Loh, H.; Low, B. Q. L.; Zhu, H.; Low, J.; Heng, J. Z. X.; Tang, K. Y.; Li, Z.; Loh, X. J.; Ye, E.; et al. Appl. Catal. B: Environ. 2023, 321, 122079. doi:10.1016/j.apcatb.2022.122079

    21. [21]

      (21) Zhong, K.; Sun, P.; Xu, H. Small 2024, 2310677. doi:10.1002/smll.202310677

    22. [22]

      (22) Guo, R. T.; Wang, J.; Bi, Z. X.; Chen, X.; Hu, X.; Pan, W. G. Small 2023, 19, 2206314. doi:10.1002/smll.202206314

    23. [23]

      (23) Ran, J.; Jaroniec, M.; Qiao, S. Z. Adv. Mater. 2018, 30, 1704649. doi:10.1002/adma.201704649

    24. [24]

      (24) Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Mater. Today 2020, 32, 222. doi:10.1016/j.mattod.2019.06.009

    25. [25]

      (25) Khalil, M.; Gunlazuardi, J.; Ivandini, T. A.; Umar, A. Renew. Sust. Energy Rev. 2019, 113, 109246. doi:10.1016/j.rser.2019.109246

    26. [26]

      (26) Gong, E.; Ali, S.; Hiragond, C. B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S.-I. Energ. Environ. Sci. 2022, 15, 880. doi:10.1039/d1ee02714j

    27. [27]

      (27) Ji, Y.; Luo, Y. ACS Catal. 2016, 6, 2018. doi:10.1021/acscatal.5b02694

    28. [28]

      (28) Vahidzadeh, E.; Zeng, S.; Manuel, A. P.; Riddell, S.; Kumar, P.; Alam, K. M.; Shankar, K. ACS Appl. Mater. Interfaces 2021, 13, 7248. doi:10.1021/acsami.0c21067

    29. [29]

      (29) Ou, H.; Li, G.; Ren, W.; Pan, B.; Luo, G.; Hu, Z.; Wang, D.; Li, Y. J. Am. Chem. Soc. 2022, 144, 22075. doi:10.1021/jacs.2c09424

    30. [30]

      (30) Ali, S.; Razzaq, A.; Kim, H.; In, S. Chem. Eng. J. 2022, 429, 131579. doi:10.1016/j.cej.2021.131579

    31. [31]

      (31) Qian, X.; Zhang, L.; Lin, Y.; Wang, M.; Wang, X.; Su, W. Appl. Surf. Sci. 2021, 568. doi:10.1016/j.apsusc.2021.150985

    32. [32]

      (32) Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi:10.1038/s41467-024-49004-7

    33. [33]

      (33) Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem. 2020, 6, 1543. doi:10.1016/j.chempr.2020.06.010

    34. [34]

      (34) Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi:10.1002/adma.202310600

    35. [35]

      (35) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, 202218688. doi:10.1002/anie.202218688

    36. [36]

      (36) Zhang, Z.; Li, X.; Tang, H.; Wu, J.; Yao, C.; Li, K. Chin. Chem. Lett. 2024, 109700. doi:10.1016/j.cclet.2024.109700

    37. [37]

      (37) Li, L.; Guo, C.; Li, T.; Yang, C.; Chen, F.; Wang, W.; Yan, R.; Ning, J.; Hu, Y. Appl. Surf. Sci. 2024, 651, 159220. doi:10.1016/j.apsusc.2023.159220

    38. [38]

      (38) Shi, W.; Qiao, X.; Wang, J.; Zhao, M.; Ge, H.; Ma, J.; Liu, S.; Zhang, W. Nanomaterials 2022, 12, 3247. doi:10.3390/nano12183247

    39. [39]

      (39) Liu, X.; Wu, Y.; Li, Y.; Yang, X.; Ma, Q.; Luo, J. Chem. Eng. J. 2024, 485, 149855. doi:10.1016/j.cej.2024.149855

    40. [40]

      (40) Zhang, Z.; Liang, J.; Zhang, W.; Zhou, M.; Zhu, X.; Liu, Z.; Li, Y.; Guan, Z.; Lee, C.-S.; Wong, P. K.; et al. Appl. Catal. B: Environ. 2023, 330, 122621. doi:10.1016/j.apcatb.2023.122621

    41. [41]

      (41) Jiang, Z.; Zhang, Z.; Liang, J.; Zhou, M.; Liu, D.; Mao, D.; Zhang, Q.; Zhang, W.; Li, H.; Song, L.; et al. Adv. Funct. Mater. 2023, 33, 2301785. doi:10.1002/adfm.202301785

    42. [42]

      (42) Fang, B.; Xing, Y.; Bonakdarpour, A.; Zhang, S.; Wilkinson, D. P. ACS Sustain. Chem. Eng. 2015, 3, 2381. doi:10.1021/acssuschemeng.5b00724

    43. [43]

      (43) Wang, W. N.; Wu, F.; Myung, Y.; Niedzwiedzki, D. M.; Im, H. S.; Park, J.; Banerjee, P.; Biswas, P. ACS Appl. Mater. Interfaces 2015, 7, 5685. doi:10.1021/am508590j

    44. [44]

      (44) Jiang, H.; Katsumata, K.-I.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A. Appl. Catal. B: Environ. 2018, 224, 783. doi:10.1016/j.apcatb.2017.11.011

    45. [45]

      (45) Zhu, Q.; Zhu, K.; Cai, M.; Zhang, Y.; Shao, Z.; Jiang, M.; Wang, X.; Geng, Z.; Wu, X.; Li, M.; et al. Nano Res. 2022, 15, 7099. doi:10.1007/s12274-022-4397-0

    46. [46]

      (46) Dong, W.; Jia, J.; Wang, Y.; An, J.; Yang, O.; Gao, X.; Liu, Y.; Zhao, J.; Li, D. Chem. Eng. J. 2022, 438, 135622. doi:10.1016/j.cej.2022.135622

    47. [47]

      (47) Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Adv. Mater. 2017, 29, 1601694. doi:10.1002/adma.201601694

    48. [48]

      (48) Barrocas, B. T.; Ambrozova, N.; Koci, K. Materials 2022, 15, 967. doi:10.3390/ma15030967

    49. [49]

      (49) Dai, B.; Zhao, W.; Wei, W.; Cao, J.; Yang, G.; Li, S.; Sun, C.; Leung, D. Y. C. Carbon 2022, 193, 272. doi:10.1016/j.carbon.2022.03.038

    50. [50]

      (50) Liu, J.; Qi, F.; Zhang, N.; Yang, J.; Liang, Z.; Tian, C.; Zhang, W.; Tang, X.; Wu, D.; Huang, Q. J. Mater. Sci. 2022, 57, 15474. doi:10.1007/s10853-022-07591-0

    51. [51]

      (51) Wei, L. W.; Liu, S. H.; Wang, H. P. ACS Appl. Mater. Interfaces 2023, 15, 25473. doi:10.1021/acsami.3c02383

    52. [52]

      (52) Dong, Z.; Zhou, J.; Zhang, Z.; Jiang, Y.; Zhou, R.; Yao, C. ACS Appl. Energy Mater. 2022, 5, 10076. doi:10.1021/acsaem.2c01760

    53. [53]

      (53) Cui, L.; Hu, L.; Shen, Q.; Liu, X.; Jia, H.; Xue, J. Appl. Surf. Sci. 2022, 581, 152343. doi:10.1016/j.apsusc.2021.152343

    54. [54]

      (54) Sun, Z.; Fang, W.; Zhao, L.; Chen, H.; He, X.; Li, W.; Tian, P.; Huang, Z. Environ. Int. 2019, 130, 104898. doi:10.1016/j.envint.2019.06.008

    55. [55]

      (55) Chang, P.; Tseng, I. H. J. CO2 Util. 2018, 26, 511. doi:10.1016/j.jcou.2018.06.009

    56. [56]

      (56) Xiao, Y.; Men, C.; Chu, B.; Qin, Z.; Ji, H.; Chen, J.; Su, T. Chem. Eng. J. 2022, 446, 137028. doi:10.1016/j.cej.2022.137028

    57. [57]

      (57) Zhu, K.; Zhu, Q.; Jiang, M.; Zhang, Y.; Shao, Z.; Geng, Z.; Wang, X.; Zeng, H.; Wu, X.; Zhang, W.; et al. Angew. Chem. Int. Ed. 2022, 61, 202207600. doi:10.1002/anie.202207600

    58. [58]

      (58) Zhang, H. X.; Hong, Q. L.; Li, J.; Wang, F.; Huang, X.; Chen, S.; Tu, W.; Yu, D.; Xu, R.; Zhou, T.; et al. Angew. Chem. Int. Ed. 2019, 58, 11752. doi:10.1002/anie.201905869

    59. [59]

      (59) Hu, Z.; Liu, W. ACS Appl. Mater. Interfaces 2020, 12, 51366. doi:10.1021/acsami.0c13323

    60. [60]

      (60) Cao, H.; Xue, J.; Wang, Z.; Dong, J.; Li, W.; Wang, R.; Sun, S.; Gao, C.; Tan, Y.; Zhu, X.; et al. J. Mater. Chem. A 2021, 9, 16339. doi:10.1039/d1ta03615g

    61. [61]

      (61) Wang, M.; Shen, M.; Jin, X.; Tian, J.; Li, M.; Zhou, Y.; Zhang, L.; Li, Y.; Shi, J. ACS Catal. 2019, 9, 4573. doi:10.1021/acscatal.8b03975

    62. [62]

      (62) Bao, X.; Zhang, M.; Wang, Z.; Dai, D.; Wang, P.; Cheng, H.; Liu, Y.; Zheng, Z.; Dai, Y.; Huang, B. Chem. Eng. J. 2022, 445, 136718. doi:10.1016/j.cej.2022.136718

    63. [63]

      (63) Zeng, Z.; Huang, H.; Fu, Z.; Lai, H.; Long, B.; Ali, A.; Song, T.; Deng, G.-J. Appl. Surf. Sci. 2021, 550, 149361. doi:10.1016/j.apsusc.2021.149361

    64. [64]

      (64) Sun, Z.; Fang, W.; Zhao, L.; Wang, H. Appl. Surf. Sci. 2020, 504, 144347. doi:10.1016/j.apsusc.2019.144347

    65. [65]

      (65) Shi, G.; Yang, L.; Liu, Z.; Chen, X.; Zhou, J.; Yu, Y. Appl. Surf. Sci. 2018, 427, 1165. doi:10.1016/j.apsusc.2017.08.148

    66. [66]

      (66) Lai, H.; Xiao, W.; Wang, Y.; Song, T.; Long, B.; Yin, S.; Ali, A.; Deng, G. Chem. Eng. J. 2021, 417, 129295. doi:10.1016/j.cej.2021.129295

    67. [67]

      (67) Tang, G.; Hou, L.; Li, J.; Song, T.; Li, J.; Yue, P.; Long, B.; Ali, A.; Deng, G. J. J. Colloid Interface Sci. 2021, 603, 530. doi:10.1016/j.jcis.2021.06.127

    68. [68]

      (68) He, L.; Zhang, W.; Zhao, K.; Liu, S.; Zhao, Y. J. Mater. Chem. A 2022, 10, 4758. doi:10.1039/d1ta10514k

    69. [69]

      (69) Bashal, A. H.; Alkanad, K.; Al-Ghorbani, M.; Ben Aoun, S.; Bajiri, M. A. J. Environ. Chem. Eng. 2023, 11, 109545. doi:10.1016/j.jece.2023.109545

    70. [70]

      (70) Li, X.; Wang, Z.; Zhang, J.; Dai, K.; Fan, K.; Dawson, G. Mater. Today Phys. 2022, 26, 100729. doi:10.1016/j.mtphys.2022.100729

    71. [71]

      (71) In, S. I.; Vaughn, D. D.; Schaak, R. E. Angew. Chem. Int. Ed. 2012, 51, 3915. doi:10.1002/anie.201108936

    72. [72]

      (72) Duan, J.; Sun, P.; Zhao, H.; Ji, Z.; Zhang, D.; Wang, W. Opt. Mater. 2021, 115, 111016. doi:10.1016/j.optmat.2021.111016

    73. [73]

      (73) Xiang, T.; Xin, F.; Zhao, C.; Lou, S.; Qu, W.; Wang, Y.; Song, Y.; Zhang, S.; Yin, X. J. Colloid Interf. Sci. 2018, 518, 34. doi:10.1016/j.jcis.2018.01.109

    74. [74]

      (74) Li, N.; Liu, X.; Zhou, J.; Chen, W.; Liu, M. Chem. Eng. J. 2020, 399, 125782. doi:10.1016/j.cej.2020.125782

    75. [75]

      (75) Nogueira, A. E.; Silva, G. T. S. T.; Oliveira, J. A.; Lopes, O. F.; Torres, J. A.; Carmo, M.; Ribeiro, C. ACS Appl. Energy Mater. 2020, 3, 7629. doi:10.1021/acsaem.0c01047

    76. [76]

      (76) Zhang, M.; Zhao, K.; Xiong, J.; Wei, Y.; Han, C.; Li, W.; Cheng, G. Sustain. Energy Fuels 2020, 4, 2593. doi:10.1039/d0se00034e

    77. [77]

      (77) Song, Y.; Ye, C.; Yu, X.; Tang, J.; Zhao, Y.; Cai, W. Appl. Surf. Sci. 2022, 583, 152463. doi:10.1016/j.apsusc.2022.152463

    78. [78]

      (78) Yendrapati Taraka, T. P.; Gautam, A.; Jain, S. L.; Bojja, S.; Pal, U. J. CO2 Util. 2019, 31, 207. doi:10.1016/j.jcou.2019.03.012

    79. [79]

      (79) Zhang, Y.; Li, J.; Zhou, W.; Liu, X.; Song, X.; Chen, S.; Wang, H.; Huo, P. Appl. Catal. B: Environ. 2024, 342, 123449. doi:10.1016/j.apcatb.2023.123449

    80. [80]

      (80) Mandal, A.; Bhattacharya, G.; Kargupta, K. J. Mater. Res. 2024, 39, 1935. doi:10.1557/s43578-024-01352-2

    81. [81]

      (81) Kim, H. R.; Razzaq, A.; Grimes, C. A.; In, S. J. CO2 Util. 2017, 20, 91. doi:10.1016/j.jcou.2017.05.008

    82. [82]

      (82) Wu, Y. A.; McNulty, I.; Liu, C.; Lau, K. C.; Liu, Q.; Paulikas, A. P.; Sun, C. J.; Cai, Z.; Guest, J. R.; Ren, Y.; et al. Nat. Energy 2019, 4, 957. doi:10.1038/s41560-019-0490-3

    83. [83]

      (83) Deng, Y.; Wan, C.; Li, C.; Wang, Y.; Mu, X.; Liu, W.; Huang, Y.; Wong, P. K.; Ye, L. ACS Catal. 2022, 12, 4526. doi:10.1021/acscatal.2c00167

    84. [84]

      (84) Yu, L.; Li, G.; Zhang, X.; Ba, X.; Shi, G.; Li, Y.; Wong, P. K.; Yu, J. C.; Yu, Y. ACS Catal. 2016, 6, 6444. doi:10.1021/acscatal.6b01455

    85. [85]

      (85) Liu, S.; Lu, J.; Pu, Y.; Fan, H. J. CO2 Util. 2019, 33, 171. doi:10.1016/j.jcou.2019.05.020

    86. [86]

      (86) Zeng, Z.; Yan, Y.; Chen, J.; Zan, P.; Tian, Q.; Chen, P. Adv. Funct. Mater. 2019, 29, 1806500. doi:10.1002/adfm.201806500

    87. [87]

      (87) Yu, L.; Ba, X.; Qiu, M.; Li, Y.; Shuai, L.; Zhang, W.; Ren, Z.; Yu, Y. Nano Energy 2019, 60, 576. doi:10.1016/j.nanoen.2019.03.083

    88. [88]

      (88) Zhou, J.; Li, Y.; Yu, L.; Li, Z.; Xie, D.; Zhao, Y.; Yu, Y. Chem. Eng. J. 2020, 385, 123940. doi:10.1016/j.cej.2019.123940

    89. [89]

      (89) Tang, Z.; He, W.; Wang, Y.; Wei, Y.; Yu, X.; Xiong, J.; Wang, X.; Zhang, X.; Zhao, Z.; Liu, J. Appl. Catal. B: Environ. 2022, 311, 121371. doi:10.1016/j.apcatb.2022.121371

    90. [90]

      (90) Bi, F.; Ehsan, M. F.; Liu, W.; He, T. Chin. J. Chem. 2015, 33, 112. doi:10.1002/cjoc.201400476

    91. [91]

      (91) Li, F.; Zhang, L.; Tong, J.; Liu, Y.; Xu, S.; Cao, Y.; Cao, S. Nano Energy 2016, 27, 320. doi:10.1016/j.nanoen.2016.06.056

    92. [92]

      (92) Yan, C.; Xu, M.; Cao, W.; Chen, Q.; Song, X.; Huo, P.; Zhou, W.; Wang, H. J. Environ. Chem. Eng. 2023, 11, 111479. doi:10.1016/j.jece.2023.111479

    93. [93]

      (93) Shi, W.; Wang, J. C.; Chen, A.; Xu, X.; Wang, S.; Li, R.; Zhang, W.; Hou, Y. Nanomaterials 2022, 12, 2284. doi:10.3390/nano12132284

    94. [94]

      (94) Shown, I.; Hsu, H.; Chang, Y.; Lin, C.; Roy, P. K.; Ganguly, A.; Wang, C.; Chang, J.; Wu, C.; Chen, L.; et al. Nano Lett. 2014, 14, 6097. doi:10.1021/nl503609v

    95. [95]

      (95) Li, L.; Zhang, Z. Chem. Eng. J. 2022, 434, 134811. doi:10.1016/j.cej.2022.134811

    96. [96]

      (96) Xiong, J.; Zhang, M.; Lu, M.; Zhao, K.; Han, C.; Cheng, G.; Wen, Z. Chin. Chem. Lett. 2022, 33, 1313. doi:10.1016/j.cclet.2021.07.052

    97. [97]

      (97) Liu, E.; Qi, L.; Bian, J.; Chen, Y.; Hu, X.; Fan, J.; Liu, H.; Zhu, C.; Wang, Q. Mater. Res. Bull. 2015, 68, 203. doi:10.1016/j.materresbull.2015.03.064

    98. [98]

      (98) Su, T. M.; Tian, H.; Qin, Z. Z.; Ji, H. B. Appl. Catal. B: Environ. 2017, 202, 364. doi:10.1016/j.apcatb.2016.09.035

    99. [99]

      (99) Zhang, T.; Low, J.; Huang, X.; Al‐Sharab, J. F.; Yu, J.; Asefa, T. ChemCatChem 2017, 9, 3054. doi:10.1002/cctc.201700512

    100. [100]

      (100) Adekoya, D. O.; Tahir, M.; Amin, N. A. S. J. CO2 Util. 2017, 18, 261. doi:10.1016/j.jcou.2017.02.004

    101. [101]

      (101) Jin, J.; Luo, J.; Zan, L.; Peng, T. Chemphyschem 2017, 18, 3230. doi:10.1002/cphc.201700563

    102. [102]

      (102) Kang, Q.; Wang, T.; Li, P.; Liu, L.; Chang, K.; Li, M.; Ye, J. Angew. Chem. Int. Ed. 2015, 54, 841. doi:10.1002/anie.201409183

    103. [103]

      (103) Kumar, S.; Hassan, I.; Regue, M.; Gonzalez-Carrero, S.; Rattner, E.; Isaacs, M. A.; Eslava, S. J. Mater. Chem. A 2021, 9, 12179. doi:10.1039/d1ta01281a

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    4. [4]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

Metrics
  • PDF Downloads(5)
  • Abstract views(79)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return