Citation: You Wu, Chang Cheng, Kezhen Qi, Bei Cheng, Jianjun Zhang, Jiaguo Yu, Liuyang Zhang. Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation[J]. Acta Physico-Chimica Sinica, ;2024, 40(11): 240602. doi: 10.3866/PKU.WHXB202406027 shu

Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation

  • Corresponding author: Bei Cheng, chengbei2013@whut.edu.cn Jianjun Zhang, zhangjianjun@cug.edu.cn
  • Received Date: 21 June 2024
    Revised Date: 25 July 2024
    Accepted Date: 26 July 2024
    Available Online: 31 July 2024

    Fund Project: Yunnan Provincial Science and Technology Plan Project 202305AF150116the National Natural Science Foundation of China 22238009the National Natural Science Foundation of China U23A20102the National Natural Science Foundation of China 52073223the National Natural Science Foundation of China 22278324the National Natural Science Foundation of China 22361142704the Natural Science Foundation of Hubei Province of China 2022CFA001the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) CUG22061

  • Photocatalytic technology harnesses clean, non-polluting solar energy to synthesize hydrogen peroxide (H2O2). In this study, ZnO/PBD S-scheme heterojunction composites, featuring ZnO nanoparticles on a donor-acceptor conjugated polymer substrate (PBD), were synthesized via the Suzuki-Miyaura reaction and hydrothermal method. The optimal ZnO/PBD composite achieved an H2O2 production efficiency of 4.07 mmol·g-1·h-1, which is 5.4 times higher than that of pristine ZnO. This significant enhancement is attributed to the formation of S-scheme heterojunctions. The successful construction of S-scheme heterojunctions was confirmed through UV-visible absorption spectroscopy and in situ irradiated X-ray photoelectron spectroscopy. Steady-state photoluminescence and femtosecond transient absorption (fs-TA) spectroscopies identified and verified the presence of defect states in ZnO. These defect states trap photogenerated electrons, adversely affecting the photocatalytic reaction. However, the S-scheme heterojunction effectively promotes the separation and transfer of electrons, mitigating this issue. The measured lifetimes of photogenerated electrons in these defect states, as determined by fitted fs-TA decay kinetics, provided further evidence of the carrier transfer mechanism in S-scheme heterojunctions. This work introduces a novel approach for studying organic/inorganic S-scheme heterojunctions using fs-TA spectroscopy.
  • 加载中
    1. [1]

      Yue, J.; Song, L.; Fan, Y.; Pan, Z.; Yang, P.; Ma, Y.; Xu, Q.; Tang, B. Angew. Chem. Int. Ed. 2023, 62, e202309624. doi: 10.1002/anie.202309624  doi: 10.1002/anie.202309624

    2. [2]

      Yan, S.; Li, Y.; Yang, X.; Jia, X.; Xu, J.; Song, H. Adv. Mater. 2024, 36, 2307967. doi: 10.1002/adma.202307967  doi: 10.1002/adma.202307967

    3. [3]

      Yang, Y.; Liu, J.; Gu, M.; Cheng, B.; Wang, L.; Yu, J. Appl. Catal. B-Environ. 2023, 333, 122780. doi: 10.1016/j.apcatb.2023.122780  doi: 10.1016/j.apcatb.2023.122780

    4. [4]

      Jiang, Z.; Long, Q.; Cheng, B.; He, R.; Wang, L. J. Mater. Sci. Technol. 2023, 162, 1. doi: 10.1016/j.jmst.2023.03.045  doi: 10.1016/j.jmst.2023.03.045

    5. [5]

      Li, F.; He, Q.; Li, F.; Tang, X.; Yu, C. Prog. Chem. 2023, 35, 330. doi: 10.7536/PC220718  doi: 10.7536/PC220718

    6. [6]

      He, B.; Luo, C.; Wang, Z.; Zhang, L.; Yu, J. Appl. Catal. B-Environ. 2023, 323, 122200. doi: 10.1016/j.apcatb.2022.122200  doi: 10.1016/j.apcatb.2022.122200

    7. [7]

      Zhou, T.; Liu, X.; Zhao, L.; Qiao, M.; Lei, W. Acta Phys. -Chim. Sin. 2023, 40, 2309020. doi: 10.3866/PKU.WHXB202309020  doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Wu, S.; Yu, H.; Chen, S.; Quan, X. ACS Catal. 2020, 10, 14380. doi: 10.1021/acscatal.0c03359  doi: 10.1021/acscatal.0c03359

    9. [9]

      Li, X.; Zhu, J.; Sun, B.; Yuan, Q.; Li, H.; Ma, Z.; Xu, T.; Chen, X.; Fu, M. J. Mater. Chem. A 2023, 11, 1503. doi: 10.1039/D2TA08203A  doi: 10.1039/D2TA08203A

    10. [10]

      Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys. -Chim. Sin. 2023, 39, 2212010. doi: 10.3866/PKU.WHXB202212010  doi: 10.3866/PKU.WHXB202212010

    11. [11]

      Pan, C.; Bian, G.; Zhang, Y.; Lou, Y.; Zhang, Y.; Dong, Y.; Xu, J.; Zhu, Y. Appl. Catal. B-Environ. 2022, 316, 121675. doi: 10.1016/j.apcatb.2022.121675  doi: 10.1016/j.apcatb.2022.121675

    12. [12]

      Yin, X.; Shi, H.; Wang, Y.; Wang, X.; Wang, P.; Yu, H. Acta Phys. -Chim. Sin. 2024, 40, 2312007. doi: 10.1039/D4TC01076K  doi: 10.1039/D4TC01076K

    13. [13]

      Fu, J.; Wang, S.; Wang, Z.; Liu, K.; Li, H.; Liu, H.; Hu, J.; Xu, X.; Li, H.; Liu, M. Front. Phys. 2020, 15, 1. doi: 10.1007/s11467-019-0950-z  doi: 10.1007/s11467-019-0950-z

    14. [14]

      Zhang, H.; Liu, J.; Zhang, Y.; Cheng, B.; Zhu, B.; Wang, L. J. Mater. Sci. Technol. 2023, 166, 241. doi: 10.1016/j.jmst.2023.05.030  doi: 10.1016/j.jmst.2023.05.030

    15. [15]

      Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat. Commun. 2024, 15, 3212. doi: 10.1038/s41467-024-47624-7  doi: 10.1038/s41467-024-47624-7

    16. [16]

      He, R.; Xu, D.; Li, X. J. Mater. Sci. Technol. 2023, 138, 256. doi: 10.1016/j.jmst.2022.09.002  doi: 10.1016/j.jmst.2022.09.002

    17. [17]

      Li, K.; Mei, J.; Li, J.; Liu, Y.; Wang, G.; Hu, D.; Yan, S.; Wang, K. Sci. China Mater. 2024, 67, 484. doi: 10.1007/s40843-023-2717-0  doi: 10.1007/s40843-023-2717-0

    18. [18]

      Cheng, J.; Wan, S.; Cao, S. Angew. Chem. Int. Ed. 2023, 62, e202310476. doi: 10.1002/anie.202310476  doi: 10.1002/anie.202310476

    19. [19]

      Miao, W.; Yao, D.; Chu, C.; Liu, Y.; Huang, Q.; Mao, S.; Ostrikov, K. Appl. Catal. B-Environ. 2023, 332, 122770. doi: 10.1016/j.apcatb.2023.122770  doi: 10.1016/j.apcatb.2023.122770

    20. [20]

      Han, C.; Xiang, S.; Jin, S.; Luo, L.; Zhang, C.; Yan, C.; Jiang, J.-X. J. Mater. Chem. A 2022, 10, 5255. doi: 10.1039/D1TA11022E  doi: 10.1039/D1TA11022E

    21. [21]

      Wang, Z.; Zheng, X.; Chen, P.; Li, D.; Zhang, Q.; Liu, H.; Zhong, J.; Lv, W.; Liu, G. J. Hazard. Mater. 2022, 424, 127379. doi: 10.1016/j.jhazmat.2021.127379  doi: 10.1016/j.jhazmat.2021.127379

    22. [22]

      Yan, F.; Zhang, Y.; Liu, S.; Zou, R.; Ghasemi, J. B.; Li, X. Chin. J. Catal. 2023, 51, 124. doi: 10.1016/S1872-2067(23)64475-4  doi: 10.1016/S1872-2067(23)64475-4

    23. [23]

      Tang, G.; Huang, X.; Song, T.; Wang, N.; Long, B.; Ali, A.; Deng, G.-J. Chem. Eng. J. 2023, 473, 145067. doi: 10.1016/j.cej.2023.145067  doi: 10.1016/j.cej.2023.145067

    24. [24]

      Wei, Q.; Yao, X.; Zhang, Q.; Yan, P.; Ru, C.; Li, C.; Tao, C.; Wang, W.; Han, D.; Han, D. Small 2021, 17, 2100132. doi: 10.1002/smll.202100132  doi: 10.1002/smll.202100132

    25. [25]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    26. [26]

      Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin. 2022, 39, 2209037. doi: 10.3866/PKU.WHXB202209037  doi: 10.3866/PKU.WHXB202209037

    27. [27]

      Wang, G.; Lv, S.; Shen, Y.; Li, W.; Lin, L.; Li, Z. J. Materiomics 2024, 10, 315. doi: 10.1016/j.jmat.2023.05.014  doi: 10.1016/j.jmat.2023.05.014

    28. [28]

      Wang, L.; Sun, J.; Cheng, B.; He, R.; Yu, J. J. Phys. Chem. Lett. 2023, 14, 4803. doi: 10.1021/acs.jpclett.3c00811  doi: 10.1021/acs.jpclett.3c00811

    29. [29]

      Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016. doi: 10.3866/PKU.WHXB202209016  doi: 10.3866/PKU.WHXB202209016

    30. [30]

      Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi: 10.1016/j.jmst.2023.03.054  doi: 10.1016/j.jmst.2023.03.054

    31. [31]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225  doi: 10.1002/adma.202203225

    32. [32]

      Van Viet, P.; Nguyen, T.-D.; Bui, D.-P.; Thi, C. M. J. Materiomics 2022, 8, 1. doi: 10.1016/j.jmat.2021.06.006  doi: 10.1016/j.jmat.2021.06.006

    33. [33]

      Yu, W.; Bie, C. Acta Phys.-Chim. Sin. 2023, 40, 2307022. doi: 10.3866/PKU.WHXB202307022  doi: 10.3866/PKU.WHXB202307022

    34. [34]

      Han, G.; Xu, F.; Cheng, B.; Li, Y.; Yu, J.; Zhang, L. Acta Phys.-Chim. Sin. 2022, 38, 2112037. doi: 10.3866/PKU.WHXB202112037  doi: 10.3866/PKU.WHXB202112037

    35. [35]

      Zhang, B.; Sun, B.; Liu, F.; Gao, T.; Zhou, G. Sci. China Mater. 2024, 67, 424. doi: 10.1007/s40843-023-2754-8  doi: 10.1007/s40843-023-2754-8

    36. [36]

      Wu, X.; Tan, L.; Chen, G.; Kang, J.; Wang, G. Sci. China Mater. 2024, 67, 444. doi: 10.1007/s40843-023-2755-2  doi: 10.1007/s40843-023-2755-2

    37. [37]

      Yan, J.; Zhang, J. J. Mater. Sci. Technol. 2024, 193, 18. doi: 10.1016/j.jmst.2023.12.054  doi: 10.1016/j.jmst.2023.12.054

    38. [38]

      Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al‐Ghamdi, A. A.; Yu, J.; Wang, L. J. Mater. Sci. Technol. 2022, 124, 193. doi: 10.1016/j.jmst.2022.01.029  doi: 10.1016/j.jmst.2022.01.029

    39. [39]

      Zhang, Y.; Qiu, J.; Zhu, B.; Fedin, M. V.; Cheng, B.; Yu, J.; Zhang, L. Chem. Eng. J. 2022, 444, 136584. doi: 10.1016/j.cej.2022.136584  doi: 10.1016/j.cej.2022.136584

    40. [40]

      Wageh, S.; Al-Hartomy, O. A.; Alotaibi, M. F.; Liu, L.-J. Rare Met. 2022, 41, 1077. doi: 10.1007/s12598-021-01902-1  doi: 10.1007/s12598-021-01902-1

    41. [41]

      Jiang, Z.; Zhang, Y.; Zhang, L.; Cheng, B.; Wang, L. Chin. J. Catal. 2022, 43, 226. doi: 10.1016/S1872-2067(21)63832-9  doi: 10.1016/S1872-2067(21)63832-9

    42. [42]

      Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi: 10.1038/s41467-021-25007-6  doi: 10.1038/s41467-021-25007-6

    43. [43]

      Jiang, Z.; Cheng, B.; Zhang, L.; Zhang, Z.; Bie, C. Chin. J. Catal. 2023, 52, 32. doi: 10.1016/S1872-2067(23)64502-4  doi: 10.1016/S1872-2067(23)64502-4

    44. [44]

      Wu, Y.; Yang, Y.; Gu, M.; Bie, C.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 53, 123. doi: 10.1016/S1872-2067(23)64514-0  doi: 10.1016/S1872-2067(23)64514-0

    45. [45]

      Ayoub, I.; Kumar, V.; Abolhassani, R.; Sehgal, R.; Sharma, V.; Sehgal, R.; Swart, H. C.; Mishra, Y. K. Nanotechnol. Rev. 2022, 11, 575-619. doi: 10.1515/ntrev-2022-0035  doi: 10.1515/ntrev-2022-0035

    46. [46]

      Yu, W.; Xu, D.; Peng, T. J. Mater. Chem. A 2015, 3, 19936. doi: 10.1039/C5TA05503B  doi: 10.1039/C5TA05503B

    47. [47]

      Hsieh, S.-H.; Ting, J.-M. Appl. Surf. Sci. 2018, 427, 465. doi: 10.1016/j.apsusc.2017.06.176  doi: 10.1016/j.apsusc.2017.06.176

    48. [48]

      Zhang, J.; Tong, T.; Zhang, L.; Li, X.; Zou, H.; Yu, J. ACS Sustain. Chem. Eng. 2018, 6, 8631. doi: 10.1021/acssuschemeng.8b00938  doi: 10.1021/acssuschemeng.8b00938

    49. [49]

      Chen, G.; Li, H.; Zhou, Y.; Cai, C.; Liu, K.; Hu, J.; Li, H.; Fu, J.; Liu, M. Nanoscale 2021, 13, 13604. doi: 10.1039/D1NR03221F  doi: 10.1039/D1NR03221F

    50. [50]

      Zhang, G.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Appl. Catal. B-Environ. 2019, 250, 313. doi: 10.1016/j.apcatb.2019.03.055  doi: 10.1016/j.apcatb.2019.03.055

    51. [51]

      Li, W.; Cheng, B.; Xiao, P.; Chen, T.; Zhang, J.; Yu, J. Small 2022, 18, 2205097. doi: 10.1002/smll.202205097  doi: 10.1002/smll.202205097

    52. [52]

      Kettle, J.; Ding, Z.; Horie, M.; Smith, G. C. Org. Electron. 2016, 39, 222. doi: 10.1016/j.orgel.2016.10.016  doi: 10.1016/j.orgel.2016.10.016

    53. [53]

      Li, Y.; Fu, M.; Bai, J.; Yang, M.; Fang, M.; Lu, P. Opt. Mater. 2024, 150, 115241. doi: 10.1016/j.optmat.2024.115241  doi: 10.1016/j.optmat.2024.115241

    54. [54]

      Ma, C.; Liu, P.; Wang, R.; Zhao, G.; Zhou, N.; Zhang, Q. Diamond Relat. Mater. 2023, 139, 110364. doi: 10.1016/j.diamond.2023.110364  doi: 10.1016/j.diamond.2023.110364

    55. [55]

      Mo, C.; Yang, M.; Sun, F.; Jian, J.; Zhong, L.; Fang, Z.; Feng, J.; Yu, D. Adv. Sci. 2020, 7, 1902988. doi: 10.1002/advs.201902988  doi: 10.1002/advs.201902988

    56. [56]

      Katayama, T.; Yamamoto, A.; Fujita, Y.; Akagi, Y.; Koinkar, P.; Furube, A. Jpn. J. Appl. Phys. 2023, 62, 1029. doi: 10.35848/1347-4065/acbd57  doi: 10.35848/1347-4065/acbd57

    57. [57]

      Zhang, J.; Yang, G.; He, B.; Cheng, B.; Li, Y.; Liang, G.; Wang, L. Chin. J. Catal. 2022, 43, 2530. doi: 10.1016/S1872-2067(22)64108-1  doi: 10.1016/S1872-2067(22)64108-1

    58. [58]

      Rouzafzay, F.; Shidpour, R.; Abou-Zied, O. K.; Bagheri, K.; Al-Abri, M. Z. M. J. Environ. Chem. Eng. 2020, 8, 104097. doi: 10.1016/j.jece.2020.104097  doi: 10.1016/j.jece.2020.104097

    59. [59]

      Sarkar, K.; Mukherjee, S.; Wiederrecht, G.; Schaller, R. D.; Gosztola, D. J.; Stroscio, M. A.; Dutta, M. Nanotechnology 2018, 29, 095701. doi: 10.1088/1361-6528/aaa530  doi: 10.1088/1361-6528/aaa530

    60. [60]

      Isimjan, T. T.; Maity, P.; Llorca, J.; Ahmed, T.; Parida, M. R.; Mohammed, O. F.; Idriss, H. ACS Omega 2017, 2, 4828. doi: 10.1021/acsomega.7b00767  doi: 10.1021/acsomega.7b00767

    61. [61]

      Liu, B.; Cai, J.; Zhang, J.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 51, 204. doi: 10.1016/S1872-2067(23)64466-3  doi: 10.1016/S1872-2067(23)64466-3

    62. [62]

      Zhang, J.; Zhu, B.; Zhang, L.; Yu, J. Chem. Commun. 2023, 59, 688. doi: 10.1039/D2CC06300J  doi: 10.1039/D2CC06300J

    63. [63]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688  doi: 10.1002/anie.202218688

    64. [64]

      Xiang, X.; Zhang, L.; Luo, C.; Zhang, J.; Cheng, B.; Liang, G.; Zhang, Z.; Yu, J. Appl. Catal. B-Environ. 2024, 340, 123196. doi: 10.1016/j.apcatb.2023.123196  doi: 10.1016/j.apcatb.2023.123196

    65. [65]

      Cai, J.; Liu, B.; Zhang, S.; Wang, L.; Wu, Z.; Zhang, J.; Cheng, B. J. Mater. Sci. Technol. 2024, 197, 183. doi: 10.1016/j.jmst.2024.02.012  doi: 10.1016/j.jmst.2024.02.012

    66. [66]

      Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nature Commun. 2024, 15, 1313. doi: 10.1038/s41467-024-45604-5  doi: 10.1038/s41467-024-45604-5

    67. [67]

      Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi: 10.1002/adma.202400288  doi: 10.1002/adma.202400288

  • 加载中
    1. [1]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    2. [2]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    3. [3]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    4. [4]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    6. [6]

      Jinhui JiangJiaqi SunYongyi ChenLei ZhangPengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145

    7. [7]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    8. [8]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    9. [9]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    10. [10]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    12. [12]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    14. [14]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    15. [15]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    16. [16]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    17. [17]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    18. [18]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(6)
  • Abstract views(729)
  • HTML views(193)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return