Citation: Yuanyin Cui,  Jinfeng Zhang,  Hailiang Chu,  Lixian Sun,  Kai Dai. Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240501. doi: 10.3866/PKU.WHXB202405016 shu

Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion

  • Corresponding author: Hailiang Chu,  Lixian Sun,  Kai Dai, 
  • Received Date: 20 May 2024
    Revised Date: 7 July 2024
    Accepted Date: 8 July 2024

    Fund Project: This work was supported by the National Natural Science Foundation of China (22278169, 51973078, 22179026), the Excellent Scientific Research and Innovation Team of Education Department of Anhui Province (2022AH010028), the Major Projects of Education Department of Anhui Province (2022AH040068), and Anhui Provincial Quality Engineering Project (2022sx134), the Innovation Platform and Talent Program Project of Guilin (20210102-4), the Guilin Lijiang Scholar Foundation and the Guangxi Bagui Scholar Foundation.

  • Semiconductor photocatalysis makes full use of solar energy, serving as a potent tactic to solve the worldwide energy deficit and safeguard the environment. Bismuth-based photocatalysts stand out among various photocatalysts as a significant area, due to their unique crystal structure, favorable mixed electron band structure, diverse composition, and huge potential for solar catalytic conversion. This document reviews the rational design of Bi-based photocatalysts for solar energy. Recent advancements in diverse Bi-based photocatalysts such as Layered Bi, Bismuth element, BiVO4, Bi2S2, and Bi2O3 are highlighted. Secondly, the synthesis strategies of Bi-based catalysts, including hydrothermal/solvothermal, chemical precipitation, and solid-state reaction, are summarized. Third, various structural regulation methods to improve the photocatalytic performance, including defect regulation, heteroatom doping, morphology, SPR effect utilization, and heterojunction construction, are systematically introduced. Additionally, a focus is given to the exclusive applications of Bi-based photocatalysts, including CO2 reduction, water decomposition, N2 fixation, NOx removal, H2O2 production, and selective organic synthesis, followed by an introduction of advanced in situ characterization techniques of the Bi-based photocatalysts. Ultimately, the forthcoming obstacles are underscored, and a future outlook for Bi-based photocatalysts is anticipated. This review aims to offer detailed instructions for comprehensively understanding and logically crafting effective bismuth-based photocatalysts, while also encouraging novel ideas and advances in energy and environmental fields, contributing to the goals of green chemistry and sustainable development.
  • 加载中
    1. [1]

      (1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi:10.1038/238037a0

    2. [2]

      (2) Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2111. doi:10.1016/S1872-2067(22)64096-8

    3. [3]

      (3) Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin. 2023, 39, 2209037. doi:10.3866/PKU.WHXB202209037

    4. [4]

      (4) Zhu, J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023, 49, 5. doi:10.1016/S1872-2067(23)64438-9

    5. [5]

      (5) Li, X.; Zhang, J.; Dai, K.; Fan, K.; Liang, C. Sol. RRL 2021, 5, 2100788. doi:10.1002/solr.202100788

    6. [6]

      (6) Li, H.; Zhou, H.; Zhou, Y.; Hu, J.; Miyauchi, M.; Fu, J.; Liu, M. Chin. J. Catal. 2022, 43, 519. doi:10.1016/S1872-2067(21)63866-4

    7. [7]

      (7) Zhang, Y.; Gao, M.; Chen, S.; Wang, H.; Huo, P. Acta Phys. -Chim. Sin. 2023, 39, 2211051. doi:10.3866/PKU.WHXB202211051

    8. [8]

      (8) Meng, S.; Chen, C.; Gu, X.; Wu, H.; Meng, Q.; Zhang, J.; Chen, S.; Fu, X.; Liu, D.; Lei, W. Appl. Catal. B 2021, 285, 119789. doi:10.1016/j.apcatb.2020.119789

    9. [9]

      (9) Ding, H.; Shen, R.; Huang, K.; Huang, C.; Liang, G.; Zhang, P.; Li, X. Adv. Funct. Mater. 2024, 34, 2400065. doi:10.1002/adfm.202400065

    10. [10]

      (10) Cao, Y.; Gou, H.; Zhu, P.; Jin, Z. Chin. J. Struct. Chem. 2022, 41, 2206079. doi:10.14102/j.cnki.0254-5861.2022-0042

    11. [11]

      (11) Cao, S.; Zhong, B.; Bie, C.; Cheng, B.; Xu, F. Acta Phys. -Chim. Sin. 2024, 40, 2307016. doi:10.3866/PKU.WHXB202307016

    12. [12]

      (12) Jiang, Z.; Zhang, Y.; Zhang, L.; Cheng, B.; Wang, L. Chin. J. Catal. 2022, 43, 226. doi:10.1016/S1872-2067(21)63832-9

    13. [13]

      (13) Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys. -Chim. Sin. 2023, 39, 2212010. doi:10.3866/PKU.WHXB202212010

    14. [14]

      (14) Dai, K.; Lv, J.; Zhang, J.; Zhu, G.; Geng, L.; Liang, C. ACS Sustain. Chem. Eng. 2018, 6, 12817. doi:10.1021/acssuschemeng.8b02064

    15. [15]

      (15) Xu, J.; Gao, D.; Yu, H.; Wang, P.; Zhu, B.; Wang, L.; Fan, J. Chin. J. Catal. 2022, 43, 215. doi:10.1016/S1872-2067(21)63830-5

    16. [16]

      (16) Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Adv. Mater. 2019, 31, 1807660. doi:10.1002/adma.201807660

    17. [17]

      (17) Jiang, Z.; Cheng, B.; Zhang, L.; Zhang, Z.; Bie, C. Chin. J. Catal. 2023, 52, 32. doi:10.1016/S1872-2067(23)64502-4

    18. [18]

      (18) Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi:10.1038/s41467-021-25007-6

    19. [19]

      (19) Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi:10.1038/s41467-024-49004-7

    20. [20]

      (20) Lu, K.; Xue, F.; Liu, F.; Li, M.; Fu, W.; Peng, H.; Zhang, C.; Huang, J.; Gao, Z.; Huang, H. Adv. Energy Mater. 2023, 13, 2301158. doi:10.1002/aenm.202301158

    21. [21]

      (21) Zhao, B.; Zhong, W.; Chen, F.; Wang, P.; Bie, C.; Yu, H. Chin. J. Catal. 2023, 52, 127. doi:10.1016/S1872-2067(23)64491-2

    22. [22]

      (22) Chen, D.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Mamatkulov, S.; Dai, K.; Low, J. Mater. Today Phys. 2024, 40, 101315. doi:10.1016/j.mtphys.2023.101315

    23. [23]

      (23) Tao, S.; Wan, S.; Huang, Q.; Li, C.; Yu, J.; Cao, S. Chin. J. Struct. Chem. 2022, 41, 2206048. doi:10.14102/j.cnki.0254-5861.2022-0068

    24. [24]

      (24) Zhang, M.; Li, Y.; Chang, W.; Zhu, W.; Zhang, L.; Jin, R.; Xing, Y. Chin. J. Catal. 2022, 43, 526. doi:10.1016/S1872-2067(21)63872-X

    25. [25]

      (25) Chen, D.; Wang, Z.; Fu, J.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 541. doi:10.1007/s40843-023-2770-8

    26. [26]

      (26) Liu, B.; Cai, J.; Zhang, J.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 51, 204. doi:10.1016/S1872-2067(23)64466-3

    27. [27]

      (27) Zhang, J.; Liu, J.; Meng, Z.; Jana, S.; Wang, L.; Zhu, B. J. Mater. Sci. Technol. 2023, 159, 1. doi:10.1016/j.jmst.2023.02.044

    28. [28]

      (28) Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 359. doi:10.1016/S1872-2067(21)63883-4

    29. [29]

      (29) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi:10.1002/adfm.202214470

    30. [30]

      (30) Hu, T.; Dai, K.; Zhang, J.; Chen, S. Appl. Catal. B 2020, 269, 118844. doi:10.1016/j.apcatb.2020.118844

    31. [31]

      (31) Huang, Y.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2539. doi:10.1016/S1872-2067(21)64024-X

    32. [32]

      (32) Gao, R.; He, H.; Bai, J.; Hao, L.; Shen, R.; Zhang, P.; Li, Y.; Li, X. Chin. J. Struct. Chem. 2022, 41, 2206031. doi:10.14102/j.cnki.0254-5861.2022-0096

    33. [33]

      (33) Mei, F.; Dai, K.; Zhang, J.; Li, L.; Liang, C. J. Colloid Interface Sci. 2022, 608, 1846. doi:10.1016/j.jcis.2021.10.034

    34. [34]

      (34) Gao, D.; Deng, P.; Zhang, J.; Zhang, L.; Wang, X.; Yu, H.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202304559. doi:10.1002/anie.202304559

    35. [35]

      (35) Isari, A. A.; Mehregan, M.; Mehregan, S.; Hayati, F.; Rezaei Kalantary, R.; Kakavandi, B. J. Hazard. Mater. 2020, 390, 122050. doi:10.1016/j.jhazmat.2020.122050

    36. [36]

      (36) Kuang, P.; Sayed, M.; Fan, J.; Cheng, B.; Yu, J. Adv. Energy Mater. 2020, 10, 1903802. doi:10.1002/aenm.201903802

    37. [37]

      (37) Liu, T.; Yang, Y.; Cao, S.; Xiang, R.; Zhang, L.; Yu, J. Adv. Mater. 2023, 35, 2207752. doi:10.1002/adma.202207752

    38. [38]

      (38) Yang, Y.; Zhu, B.; Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Appl. Catal. B 2022, 317, 121788. doi:10.1016/j.apcatb.2022.121788

    39. [39]

      (39) Zou, J.; Wu, J.; Wang, Y.; Deng, F.; Jiang, J.; Zhang, Y.; Liu, S.; Li, N.; Zhang, H.; Yu, J.; et al. Chem. Soc. Rev. 2022, 51, 2972. doi:10.1039/D0CS01487G

    40. [40]

      (40) Yang, H.; Zhang, J.; Dai, K. Chin. J. Catal. 2022, 43, 255. doi:10.1016/S1872-2067(20)63784-6

    41. [41]

      (41) Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P.; Li, X. Chin. J. Catal. 2022, 43, 178. doi:10.1016/S1872-2067(21)63910-4

    42. [42]

      (42) Dai, M.; He, Z.; Zhang, P.; Li, X.; Wang, S. J. Mater. Sci. Technol. 2022, 122, 231. doi:10.1016/j.jmst.2022.02.014

    43. [43]

      (43) Li, R.; Luan, Q.; Dong, C.; Dong, W.; Tang, W.; Wang, G.; Lu, Y. Appl. Catal. B 2021, 286, 119832. doi:10.1016/j.apcatb.2020.119832

    44. [44]

      (44) Xu, M.; Yang, J.; Sun, C.; Liu, L.; Cui, Y.; Liang, B. Chem. Eng. J. 2020, 389, 124402. doi:10.1016/j.cej.2020.124402

    45. [45]

      (45) Xie, Q.; He, W.; Liu, S.; Li, C.; Zhang, J.; Wong, P. Chin. J. Catal. 2020, 41, 140. doi:10.1016/S1872-2067(19)63481-9

    46. [46]

      (46) Chawla, A.; Sudhaik, A.; Sonu; Raizada, P.; Ahamad, T.; Van Le, Q.; Nguyen, V.; Thakur, S.; Mishra, A. K.; Selvasembian, R.; et al. Coord. Chem. Rev. 2023, 491, 215246. doi:10.1016/j.ccr.2023.215246

    47. [47]

      (47) Lan, Y.; Zhang, Y.; Huang, X.; Bi, Y. Angew. Chem. Int. Ed. 2024, 63, e202407736. doi:10.1002/anie.202407736

    48. [48]

      (48) Tian, N.; Hu, C.; Wang, J.; Zhang, Y.; Ma, T.; Huang, H. Coord. Chem. Rev. 2022, 463, 214515. doi:10.1016/j.ccr.2022.214515

    49. [49]

      (49) Li, Q.; Zhang, J.; Xu, W.; Wang, H.; Zhou, J.; Chen, Q.; Chen, J.; Chen, D. Chem. Eng. J. 2023, 471, 144658. doi:10.1016/j.cej.2023.144658

    50. [50]

      (50) Guo, J.; Li, X.; Liang, J.; Yuan, X.; Jiang, L.; Yu, H.; Sun, H.; Zhu, Z.; Ye, S.; Tang, N.; et al. Coord. Chem. Rev. 2021, 443, 214033. doi:10.1016/j.ccr.2021.214033

    51. [51]

      (51) Vinoth, S.; Wee-Jun, O.; Pandikumar, A. Coord. Chem. Rev. 2022, 464, 214541. doi:10.1016/j.ccr.2022.214541

    52. [52]

      (52) Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016. doi:10.3866/PKU.WHXB202209016

    53. [53]

      (53) Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39, 2212026. doi:10.3866/PKU.WHXB202212026

    54. [54]

      (54) Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi:10.1016/j.jmst.2023.03.003

    55. [55]

      (55) Li, K.; Gong, K.; Liu, J.; Yang, Y.; Nabi, I.; Bacha, A.-U.-R.; Cheng, H.; Han, J.; Zhang, L. J. Hazard. Mater. 2021, 418, 126207. doi:10.1016/j.jhazmat.2021.126207

    56. [56]

      (56) Pang, Z.; Wang, B.; Yan, X.; Wang, C.; Yin, S.; Li, H.; Xia, J. Appl. Surf. Sci. 2022, 578, 151921. doi:10.1016/j.apsusc.2021.151921

    57. [57]

      (57) He, Y.; Li, J.; Li, K.; Sun, M.; Yuan, C.; Chen, R.; Sheng, J.; Leng, G.; Dong, F. Chin. J. Catal. 2020, 41, 1430. doi:10.1016/s1872-2067(20)63612-9

    58. [58]

      (58) He, R.; Zheng, Y.; Feng, J.; Mo, Q.; Gong, K.; Xu, D. J. Mater. Sci. Technol. 2024, 178, 112. doi:10.1016/j.jmst.2023.07.076

    59. [59]

      (59) Supriya, S. Coord. Chem. Rev. 2023, 479, 215010. doi:10.1016/j.ccr.2022.215010

    60. [60]

      (60) Wang, D.; Lin, Z.; Gu, H.; Li, Y.; Li, H.; Shao, J. Prog. Chem. 2023, 35, 606. doi:10.7536/PC220934

    61. [61]

      (61) Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi:10.3866/PKU.WHXB202309031

    62. [62]

      (62) Liu, L.; Dai, K.; Zhang, J.; Li, L. J. Colloid Interface Sci. 2021, 604, 844. doi:10.1016/j.jcis.2021.07.064

    63. [63]

      (63) Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi:10.1002/adma.202300643

    64. [64]

      (64) Ozer, M. S.; Eroglu, Z.; Yalin, A. S.; Kılıç, M.; Rothlisberger, U.; Metin, O. Appl. Catal. B 2022, 304, 120957. doi:10.1016/j.apcatb.2021.120957

    65. [65]

      (65) Zhang, D.; Cui, X.; Liu, L.; Xu, Y.; Zhao, J.; Han, J.; Zheng, W. ACS Appl. Mater. Interfaces 2021, 13, 21582. doi:10.1021/acsami.1c01470

    66. [66]

      (66) Sun, Y.; Suriyaprakash, J.; Shan, L.; Xu, H.; Zhang, J.; Chen, G.; Zhang, Y.; Wu, H.; Li, X.; Dong, L.; et al. Appl. Catal. B 2024, 355, 124209. doi:10.1016/j.apcatb.2024.124209

    67. [67]

      (67) Philo, D.; Luo, S.; He, C.; Wang, Q.; Ichihara, F.; Jia, L.; Oshikiri, M.; Pang, H.; Wang, Y.; Li, S.; et al. Adv. Funct. Mater. 2022, 32, 2206811. doi:10.1002/adfm.202206811

    68. [68]

      (68) Liu, T.; Huang, J.; Huang, Z.; Luo, Q.; Wu, H.; Meng, Y.; He, C.; Li, H. Chem. Eng. J. 2024, 486, 150209. doi:10.1016/j.cej.2024.150209

    69. [69]

      (69) Lei, B.; Cui, W.; Sheng, J.; Wang, H.; Chen, P.; Li, J.; Sun, Y.; Dong, F. Sci. Bull. 2020, 65, 467. doi:10.1016/j.scib.2020.01.007

    70. [70]

      (70) Lan, M.; Dong, X.; Zheng, N.; Zhang, X.; Wang, Y.; Zhang, X. J. Mater. Sci. Technol. 2023, 167, 237. doi:10.1016/j.jmst.2023.05.037

    71. [71]

      (71) Long, Z.; Zhang, G.; Du, H.; Zhu, J.; Li, J. J. Hazard. Mater. 2021, 407, 124394. doi:10.1016/j.jhazmat.2020.124394

    72. [72]

      (72) Helal, A.; Harraz, F. A.; Ismail, A. A.; Sami, T. M.; Ibrahim, I. Appl. Catal. B 2017, 213, 18. doi:10.1016/j.apcatb.2017.05.009

    73. [73]

      (73) Hu, T.; Dai, K.; Zhang, J.; Zhu, G.; Liang, C. Mater. Lett. 2019, 257, 126740. doi:10.1016/j.matlet.2019.126740

    74. [74]

      (74) Lu, H.; Hao, Q.; Chen, T.; Zhang, L.; Chen, D.; Ma, C.; Yao, W.; Zhu, Y. Appl. Catal. B 2018, 237, 59. doi:10.1016/j.apcatb.2018.05.069

    75. [75]

      (75) Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi:10.1016/j.jmst.2021.11.046

    76. [76]

      (76) Xin, Y.; Zhu, Q.; Gao, T.; Li, X.; Zhang, W.; Wang, H.; Ji, D.; Huang, Y.; Padervand, M.; Yu, F.; et al. Appl. Catal. B 2023, 324, 122238. doi:10.1016/j.apcatb.2022.122238

    77. [77]

      (77) Li, X.; Dong, Q.; Li, F.; Zhu, Q.; Tian, Q.; Tian, L.; Zhu, Y.; Pan, B.; Padervand, M.; Wang, C. Appl. Catal. B 2024, 340, 123238. doi:10.1016/j.apcatb.2023.123238

    78. [78]

      (78) Xu, Y.; You, Y.; Huang, H.; Guo, Y.; Zhang, Y. J. Hazard. Mater. 2020, 381, 121159. doi:10.1016/j.jhazmat.2019.121159

    79. [79]

      (79) Zhang, Z.; Wen, L.; Liao, S.; Zeng, X.; Zhou, R.; Zeng, Y. Chem. Eng. J. 2023, 474, 145473. doi:10.1016/j.cej.2023.145473

    80. [80]

      (80) Li, Y.; Zhu, C.; Chen, L.; Liu, L.; Zhang, J.; Yang, N.; Li, Y. Chem. Eng. J. 2023, 473, 145282. doi:10.1016/j.cej.2023.145282

    81. [81]

      (81) Li, S.; Cai, M.; Wang, C.; Liu, Y.; Li, N.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 123, 177. doi:10.1016/j.jmst.2022.02.012

    82. [82]

      (82) Guan, X.; Zhang, X.; Zhang, C.; Li, R.; Liu, J.; Wang, Y.; Wang, Y.; Fan, C.; Li, Z. J. Colloid Interface Sci. 2023, 644, 426. doi:10.1016/j.jcis.2023.04.097

    83. [83]

      (83) Bariki, R.; Bhoi, Y. P.; Pradhan, S. K.; Panda, S.; Nayak, S. K.; Das, K.; Majhi, D.; Mishra, B. G. Sep. Purif. Technol. 2023, 324, 124509. doi:10.1016/j.seppur.2023.124509

    84. [84]

      (84) Shen, R.; Hao, L.; Ng, Y.; Zhang, P.; Arramel, A.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 2453. doi:10.1016/S1872-2067(22)64104-4

    85. [85]

      (85) Peng, D.; Zeng, H.; Xiong, J.; Liu, F.; Wang, L.; Xu, S.; Yang, Z.; Liu, S. J. Colloid Interface Sci. 2023, 629, 133. doi:10.1016/j.jcis.2022.09.031

    86. [86]

      (86) Yang, C.; Zhang, Y.; Yue, F.; Du, R.; Ma, T.; Bian, Y.; Li, R.; Guo, L.; Wang, D.; Fu, F. Appl. Catal. B 2023, 338, 123057. doi:10.1016/j.apcatb.2023.123057

    87. [87]

      (87) Chen, L.; Li, C.; Zhao, Y.; Wu, J.; Li, X.; Qiao, Z.; He, P.; Qi, X.; Liu, Z.; Wei, G. Chem. Eng. J. 2021, 425, 131599. doi:10.1016/j.cej.2021.131599

    88. [88]

      (88) Li, H.; Li, R.; Liu, G.; Zhai, M.; Yu, J. Adv. Mater. 2023, 35, 2301307. doi:10.1002/adma.202301307

    89. [89]

      (89) Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Chem. Rev. 2022, 122, 10484. doi:10.1021/acs.chemrev.1c00473

    90. [90]

      (90) Lv, J.; Zhang, J.; Liu, J.; Li, Z.; Dai, K.; Liang, C. ACS Sustain. Chem. Eng. 2018, 6, 696. doi:10.1021/acssuschemeng.7b03032

    91. [91]

      (91) Xu, Y.; Wen, Z.; Wang, T.; Zhang, M.; Ding, C.; Guo, Y.; Jiang, D.; Wang, K. Biosens. Bioelectron. 2020, 166, 112453. doi:10.1016/j.bios.2020.112453

    92. [92]

      (92) Zhang, L.; Yang, C.; Lv, K.; Lu, Y.; Li, Q.; Wu, X.; Li, Y.; Li, X.; Fan, J.; Li, M. Chin. J. Catal. 2019, 40, 755. doi:10.1016/S1872-2067(19)63320-6

    93. [93]

      (93) Zhang, M.; Ke, J.; Xu, D.; Zhang, X.; Liu, H.; Wang, Y.; Yu, J. J. Colloid Interface Sci. 2022, 615, 663. doi:10.1016/j.jcis.2022.02.026

    94. [94]

      (94) Yu, J.; Li, X.; Fu, J.; Dai, K. Sci. China Mater. 2024, 67, 379. doi:10.1007/s40843-024-2779-5

    95. [95]

      (95) Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi:10.1016/S1872-2067(23)64444-4

    96. [96]

      (96) Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J. B.; Yu, J. Chin. J. Struct. Chem. 2022, 41, 2206003. doi:10.14102/j.cnki.0254-5861.2022-0150

    97. [97]

      (97) Li, F.; Zhu, G.; Jiang, J.; Yang, L.; Deng, F.; Arramel; Li, X. J. Mater. Sci. Technol. 2024, 177, 142. doi:10.1016/j.jmst.2023.08.038

    98. [98]

      (98) Wang, J.; Wang, Z.; Zhang, J.; Chai, S.; Dai, K.; Low, J. Nanoscale 2022, 14, 18087. doi:10.1039/d2nr05341a

    99. [99]

      (99) Liu, Q.; Du, X.; Li, W.; Dai, W.; Liu, B. Acta Phys. -Chim. Sin. 2024, 40, 2311016. doi:10.3866/PKU.WHXB202311016

    100. [100]

      (100) Wang, J.; Wang, Z.; Dai, K.; Zhang, J. J. Mater. Sci. Technol. 2023, 165, 187. doi:10.1016/j.jmst.2023.03.067

    101. [101]

      (101) Yu, W.; Bie, C. Acta Phys. -Chim. Sin. 2024, 40, 2307022. doi:10.3866/PKU.WHXB202307022

    102. [102]

      (102) Li, X.; Sun, H.; Xie, Y.; Liang, Y.; Gong, X.; Qin, P.; Jiang, L.; Guo, J.; Liu, C.; Wu, Z. Coord. Chem. Rev. 2022, 467, 214596. doi:10.1016/j.ccr.2022.214596

    103. [103]

      (103) Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi:10.1016/j.trechm.2022.08.008

    104. [104]

      (104) He, R.; Ou, S.; Liu, Y.; Liu, Y.; Xu, D. Chin. J. Catal. 2022, 43, 370. doi:10.1016/S1872-2067(21)63911-6

    105. [105]

      (105) Chen, R.; Xia, J.; Chen, Y.; Shi, H. Acta Phys. -Chim. Sin. 2023, 39, 2209012. doi:10.3866/PKU.WHXB202209012

    106. [106]

      (106) Xia, B.; He, B.; Zhang, J.; Li, L.; Zhang, Y.; Yu, J.; Ran, J.; Qiao, S. Adv. Energy Mater. 2022, 12, 2201449. doi:10.1002/aenm.202201449

    107. [107]

      (107) He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi:10.1002/adma.202203225

    108. [108]

      (108) Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi:10.1002/adma.202400288

    109. [109]

      (109) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi:10.1002/adma.202107668

    110. [110]

      (110) Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi:10.1002/adma.202310600

    111. [111]

      (111) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi:10.1002/anie.202218688

    112. [112]

      (112) He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi:10.1002/anie.202313172

    113. [113]

      (113) He, H.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 34, 2315426. doi:10.1002/adfm.202315426

    114. [114]

      (114) Liu, L.; Hu, T.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2021, 42, 46. doi:10.1016/S1872-2067(20)63560-4

    115. [115]

      (115) Wang, Y.; Tang, Y.; Sun, J.; Wu, X.; Liang, H.; Qu, Y.; Jing, L. Appl. Catal. B 2022, 319, 121893. doi:10.1016/j.apcatb.2022.121893

    116. [116]

      (116) Li, S.; Wang, C.; Liu, Y.; Cai, M.; Wang, Y.; Zhang, H.; Guo, Y.; Zhao, W.; Wang, Z.; Chen, X. Chem. Eng. J. 2021, 429, 132519. doi:10.1016/j.cej.2021.132519

    117. [117]

      (117) Zhao, X.; You, Y.; Huang, S.; Wu, Y.; Ma, Y.; Zhang, G.; Zhang, Z. Appl. Catal. B 2020, 278, 119251. doi:10.1016/j.apcatb.2020.119251

    118. [118]

      (118) Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S.-K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S. Chem. Eng. J. 2021, 419, 129530. doi:10.1016/j.cej.2021.129530

    119. [119]

      (119) Dutta, V.; Sudhaik, A.; Sonu; Raizada, P.; Singh, A.; Ahamad, T.; Thakur, S.; Le, Q. V.; Nguyen, V.-H.; Singh, P. J. Mater. Sci. Technol. 2023, 162, 11. doi:10.1016/j.jmst.2023.03.037

    120. [120]

      (120) Li, X.; Zhang, J.; Wang, Z.; Fu, J.; Li, S.; Dai, K.; Liu, M. Chem. Eur. J. 2023, 29, e202202669. doi:10.1002/chem.202202669

    121. [121]

      (121) Chen, Q.; Wang, X.; Zhou, Y.; Tan, Y.; Li, H.; Fu, J.; Liu, M. Adv. Mater. 2024, 36, 2303902. doi:10.1002/adma.202303902

    122. [122]

      (122) Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Chem. Rev. 2019, 119, 3962. doi:10.1021/acs.chemrev.8b00400

    123. [123]

      (123) Lin, M.; Luo, M.; Liu, Y.; Shen, J.; Long, J.; Zhang, Z. Chin. J. Catal. 2023, 50, 239. doi:10.1016/S1872-2067(23)64477-8

    124. [124]

      (124) Kuang, P.; Ni, Z.; Zhu, B.; Lin, Y.; Yu, J. Adv. Mater. 2023, 35, 2303030. doi:10.1002/adma.202303030

    125. [125]

      (125) Zhang, Y.; Guo, P.; Guo, S.; Xin, X.; Wang, Y.; Huang, W.; Wang, M.; Yang, B.; Jorge Sobrido, A.; Ghasemi, J. B.; et al. Angew. Chem. Int. Ed. 2022, 61, e202209703. doi:10.1002/anie.202209703

    126. [126]

      (126) Wang, Y.; Zhu, B.; Cheng, B.; Macyk, W.; Kuang, P.; Yu, J. Appl. Catal. B 2022, 314, 121503. doi:10.1016/j.apcatb.2022.121503

    127. [127]

      (127) Gao, D.; Xu, J.; Wang, L.; Zhu, B.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2108475. doi:10.1002/adma.202108475

    128. [128]

      (128) He, R.; Ran, J. J. Mater. Sci. Technol. 2023, 157, 107. doi:10.1016/j.jmst.2023.02.020

    129. [129]

      (129) Ruan, X.; Meng, D.; Huang, C.; Xu, M.; Jiao, D.; Cheng, H.; Cui, Y.; Li, Z.; Ba, K.; Xie, T.; et al. Adv. Mater. 2024, 36, 2309199. doi:10.1002/adma.202309199

    130. [130]

      (130) Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi:10.1016/j.chempr.2022.04.013

    131. [131]

      (131) Guo, W.; Luo, H.; Jiang, Z.; Shangguan, W. Chin. J. Catal. 2022, 43, 316. doi:10.1016/s1872-2067(21)63846-9

    132. [132]

      (132) Chen, Y.; Zhao, C.; Ma, S.; Xing, P.; Hu, X.; Wu, Y.; He, Y. Inorg. Chem. Front. 2019, 6, 3083. doi:10.1039/C9QI00782B

    133. [133]

      (133) Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2023, 42, 100202. doi:10.1016/j.cjsc.2023.100202

    134. [134]

      (134) Yang, C.; Wan, S.; Zhu, B.; Yu, J.; Cao, S. Angew. Chem. Int. Ed. 2022, 61, e202208438. doi:10.1002/anie.202208438

    135. [135]

      (135) Cheng, J.; Wang, W.; Zhang, J.; Wan, S.; Cheng, B.; Yu, J.; Cao, S. Angew. Chem. Int. Ed. 2024, 63, e202406310. doi:10.1002/anie.202406310

    136. [136]

      (136) Yang, C.; Cheng, B.; Xu, J.; Yu, J.; Cao, S. EnergyChem 2024, 6, 100116. doi:10.1016/j.enchem.2023.100116

    137. [137]

      (137) Oliva, M. A.; Ortiz-Bustos, J.; Cruz-Yusta, M.; Martin, F.; del Hierro, I.; Pérez, Y.; Pavlovic, I.; Sánchez, L. Chem. Eng. J. 2023, 470, 144088. doi:10.1016/j.cej.2023.144088

    138. [138]

      (138) Zhang, R.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M. H.; Huang, B. Appl. Catal. B 2019, 254, 463. doi:10.1016/j.apcatb.2019.05.024

    139. [139]

      (139) Wang, B.; Zhang, W.; Liu, G.; Chen, H.; Weng, Y.; Li, H.; Chu, P.; Xia, J. Adv. Funct. Mater. 2022, 32, 2202885. doi:10.1002/adfm.202202885

    140. [140]

      (140) Benisti, I.; Nandi, R.; Amdursky, N.; Paz, Y. Appl. Catal. B 2020, 278, 119351. doi:10.1016/j.apcatb.2020.119351

    141. [141]

      (141) Xie, J.; Lu, Z.; Feng, Y.; Huang, J.; Hu, J.; Hao, A.; Cao, Y. Nano Res. 2023, 17, 297. doi:10.1007/s12274-023-5828-2

    142. [142]

      (142) Wang, H.; Zhang, W.; Li, X.; Li, J.; Cen, W.; Li, Q.; Dong, F. Appl. Catal. B 2018, 225, 218. doi:10.1016/j.apcatb.2017.11.079

    143. [143]

      (143) Li, J.; Yin, S.; Dong, F.; Cen, W.; Chu, Y. ACS Appl. Mater. Interfaces 2017, 9, 19861. doi:10.1021/acsami.7b04026

    144. [144]

      (144) Li, X.; Zhang, W.; Cui, W.; Sun, Y.; Jiang, G.; Zhang, Y.; Huang, H.; Dong, F. Appl. Catal. B 2018, 221, 482. doi:10.1016/j.apcatb.2017.09.046

    145. [145]

      (145) Bian, Y.; He, H.; Dawson, G.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 514. doi:10.1007/s40843-023-2725-y

    146. [146]

      (146) Li, J.; Wu, X.; Wan, Z.; Chen, H.; Zhang, G. Appl. Catal. B 2019, 243, 667. doi:10.1016/j.apcatb.2018.10.067

    147. [147]

      (147) Chang, X.; Xie, L.; Sha, W.; Lu, K.; Qi, Q.; Dong, C.; Yan, X.; Gondal, M. A.; Rashid, S. G.; Dai, Q.; et al. Appl. Catal. B 2017, 201, 495. doi:10.1016/j.apcatb.2016.08.049

    148. [148]

      (148) He, R.; Chen, R.; Luo, J.; Zhang, S.; Xu, D. Acta Phys. -Chim. Sin. 2021, 37, 2011022. doi:10.3866/PKU.WHXB202011022

    149. [149]

      (149) Wu, Q.; Zhang, Q.; Li, W.; Luo, L.; Du, P. Chem. Eng. J. 2023, 475, 146192. doi:10.1016/j.cej.2023.146192

    150. [150]

      (150) Dong, X.; Zhang, W.; Sun, Y.; Li, J.; Cen, W.; Cui, Z.; Huang, H.; Dong, F. J. Catal. 2018, 357, 41. doi:10.1016/j.jcat.2017.10.004

    151. [151]

      (151) Wei, S.; Zhong, H.; Wang, H.; Song, Y.; Jia, C.; Anpo, M.; Wu, L. Appl. Catal. B 2022, 305, 121032. doi:10.1016/j.apcatb.2021.121032

    152. [152]

      (152) Ren, Q.; He, Y.; Wang, H.; Sun, Y.; Dong, F. Research 2023, 6, 0244. doi:10.34133/research.0244

  • 加载中
    1. [1]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    2. [2]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    3. [3]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    8. [8]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    9. [9]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    19. [19]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(1)
  • Abstract views(55)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return