Citation: Yuanyin Cui, Jinfeng Zhang, Hailiang Chu, Lixian Sun, Kai Dai. Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240501. doi: 10.3866/PKU.WHXB202405016 shu

Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion

  • Semiconductor photocatalysis makes full use of solar energy, serving as a potent tactic to solve the worldwide energy deficit and safeguard the environment. Bismuth-based photocatalysts stand out among various photocatalysts as a significant area, due to their unique crystal structure, favorable mixed electron band structure, diverse composition, and huge potential for solar catalytic conversion. This document reviews the rational design of Bi-based photocatalysts for solar energy. Recent advancements in diverse Bi-based photocatalysts such as Layered Bi, Bismuth element, BiVO4, Bi2S2, and Bi2O3 are highlighted. Secondly, the synthesis strategies of Bi-based catalysts, including hydrothermal/solvothermal, chemical precipitation, and solid-state reaction, are summarized. Third, various structural regulation methods to improve the photocatalytic performance, including defect regulation, heteroatom doping, morphology, SPR effect utilization, and heterojunction construction, are systematically introduced. Additionally, a focus is given to the exclusive applications of Bi-based photocatalysts, including CO2 reduction, water decomposition, N2 fixation, NOx removal, H2O2 production, and selective organic synthesis, followed by an introduction of advanced in situ characterization techniques of the Bi-based photocatalysts. Ultimately, the forthcoming obstacles are underscored, and a future outlook for Bi-based photocatalysts is anticipated. This review aims to offer detailed instructions for comprehensively understanding and logically crafting effective bismuth-based photocatalysts, while also encouraging novel ideas and advances in energy and environmental fields, contributing to the goals of green chemistry and sustainable development.
  • 加载中
    1. [1]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi: 10.1038/238037a0  doi: 10.1038/238037a0

    2. [2]

      Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2111. doi: 10.1016/S1872-2067(22)64096-8  doi: 10.1016/S1872-2067(22)64096-8

    3. [3]

      Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin. 2023, 39, 2209037. doi: 10.3866/PKU.WHXB202209037  doi: 10.3866/PKU.WHXB202209037

    4. [4]

      Zhu, J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023, 49, 5. doi: 10.1016/S1872-2067(23)64438-9  doi: 10.1016/S1872-2067(23)64438-9

    5. [5]

      Li, X.; Zhang, J.; Dai, K.; Fan, K.; Liang, C. Sol. RRL 2021, 5, 2100788. doi: 10.1002/solr.202100788  doi: 10.1002/solr.202100788

    6. [6]

      Li, H.; Zhou, H.; Zhou, Y.; Hu, J.; Miyauchi, M.; Fu, J.; Liu, M. Chin. J. Catal. 2022, 43, 519. doi: 10.1016/S1872-2067(21)63866-4  doi: 10.1016/S1872-2067(21)63866-4

    7. [7]

      Zhang, Y.; Gao, M.; Chen, S.; Wang, H.; Huo, P. Acta Phys. -Chim. Sin. 2023, 39, 2211051. doi: 10.3866/PKU.WHXB202211051  doi: 10.3866/PKU.WHXB202211051

    8. [8]

      Meng, S.; Chen, C.; Gu, X.; Wu, H.; Meng, Q.; Zhang, J.; Chen, S.; Fu, X.; Liu, D.; Lei, W. Appl. Catal. B 2021, 285, 119789. doi: 10.1016/j.apcatb.2020.119789  doi: 10.1016/j.apcatb.2020.119789

    9. [9]

      Ding, H.; Shen, R.; Huang, K.; Huang, C.; Liang, G.; Zhang, P.; Li, X. Adv. Funct. Mater. 2024, 34, 2400065. doi: 10.1002/adfm.202400065  doi: 10.1002/adfm.202400065

    10. [10]

      Cao, Y.; Gou, H.; Zhu, P.; Jin, Z. Chin. J. Struct. Chem. 2022, 41, 2206079. doi: 10.14102/j.cnki.0254-5861.2022-0042  doi: 10.14102/j.cnki.0254-5861.2022-0042

    11. [11]

      Cao, S.; Zhong, B.; Bie, C.; Cheng, B.; Xu, F. Acta Phys. -Chim. Sin. 2024, 40, 2307016. doi: 10.3866/PKU.WHXB202307016  doi: 10.3866/PKU.WHXB202307016

    12. [12]

      Jiang, Z.; Zhang, Y.; Zhang, L.; Cheng, B.; Wang, L. Chin. J. Catal. 2022, 43, 226. doi: 10.1016/S1872-2067(21)63832-9  doi: 10.1016/S1872-2067(21)63832-9

    13. [13]

      Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys. -Chim. Sin. 2023, 39, 2212010. doi: 10.3866/PKU.WHXB202212010  doi: 10.3866/PKU.WHXB202212010

    14. [14]

      Dai, K.; Lv, J.; Zhang, J.; Zhu, G.; Geng, L.; Liang, C. ACS Sustain. Chem. Eng. 2018, 6, 12817. doi: 10.1021/acssuschemeng.8b02064  doi: 10.1021/acssuschemeng.8b02064

    15. [15]

      Xu, J.; Gao, D.; Yu, H.; Wang, P.; Zhu, B.; Wang, L.; Fan, J. Chin. J. Catal. 2022, 43, 215. doi: 10.1016/S1872-2067(21)63830-5  doi: 10.1016/S1872-2067(21)63830-5

    16. [16]

      Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Adv. Mater. 2019, 31, 1807660. doi: 10.1002/adma.201807660  doi: 10.1002/adma.201807660

    17. [17]

      Jiang, Z.; Cheng, B.; Zhang, L.; Zhang, Z.; Bie, C. Chin. J. Catal. 2023, 52, 32. doi: 10.1016/S1872-2067(23)64502-4  doi: 10.1016/S1872-2067(23)64502-4

    18. [18]

      Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi: 10.1038/s41467-021-25007-6  doi: 10.1038/s41467-021-25007-6

    19. [19]

      Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi: 10.1038/s41467-024-49004-7  doi: 10.1038/s41467-024-49004-7

    20. [20]

      Lu, K.; Xue, F.; Liu, F.; Li, M.; Fu, W.; Peng, H.; Zhang, C.; Huang, J.; Gao, Z.; Huang, H. Adv. Energy Mater. 2023, 13, 2301158. doi: 10.1002/aenm.202301158  doi: 10.1002/aenm.202301158

    21. [21]

      Zhao, B.; Zhong, W.; Chen, F.; Wang, P.; Bie, C.; Yu, H. Chin. J. Catal. 2023, 52, 127. doi: 10.1016/S1872-2067(23)64491-2  doi: 10.1016/S1872-2067(23)64491-2

    22. [22]

      Chen, D.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Mamatkulov, S.; Dai, K.; Low, J. Mater. Today Phys. 2024, 40, 101315. doi: 10.1016/j.mtphys.2023.101315  doi: 10.1016/j.mtphys.2023.101315

    23. [23]

      Tao, S.; Wan, S.; Huang, Q.; Li, C.; Yu, J.; Cao, S. Chin. J. Struct. Chem. 2022, 41, 2206048. doi: 10.14102/j.cnki.0254-5861.2022-0068  doi: 10.14102/j.cnki.0254-5861.2022-0068

    24. [24]

      Zhang, M.; Li, Y.; Chang, W.; Zhu, W.; Zhang, L.; Jin, R.; Xing, Y. Chin. J. Catal. 2022, 43, 526. doi: 10.1016/S1872-2067(21)63872-X  doi: 10.1016/S1872-2067(21)63872-X

    25. [25]

      Chen, D.; Wang, Z.; Fu, J.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 541. doi: 10.1007/s40843-023-2770-8  doi: 10.1007/s40843-023-2770-8

    26. [26]

      Liu, B.; Cai, J.; Zhang, J.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 51, 204. doi: 10.1016/S1872-2067(23)64466-3  doi: 10.1016/S1872-2067(23)64466-3

    27. [27]

      Zhang, J.; Liu, J.; Meng, Z.; Jana, S.; Wang, L.; Zhu, B. J. Mater. Sci. Technol. 2023, 159, 1. doi: 10.1016/j.jmst.2023.02.044  doi: 10.1016/j.jmst.2023.02.044

    28. [28]

      Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 359. doi: 10.1016/S1872-2067(21)63883-4  doi: 10.1016/S1872-2067(21)63883-4

    29. [29]

      Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi: 10.1002/adfm.202214470  doi: 10.1002/adfm.202214470

    30. [30]

      Hu, T.; Dai, K.; Zhang, J.; Chen, S. Appl. Catal. B 2020, 269, 118844. doi: 10.1016/j.apcatb.2020.118844  doi: 10.1016/j.apcatb.2020.118844

    31. [31]

      Huang, Y.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2539. doi: 10.1016/S1872-2067(21)64024-X  doi: 10.1016/S1872-2067(21)64024-X

    32. [32]

      Gao, R.; He, H.; Bai, J.; Hao, L.; Shen, R.; Zhang, P.; Li, Y.; Li, X. Chin. J. Struct. Chem. 2022, 41, 2206031. doi: 10.14102/j.cnki.0254-5861.2022-0096  doi: 10.14102/j.cnki.0254-5861.2022-0096

    33. [33]

      Mei, F.; Dai, K.; Zhang, J.; Li, L.; Liang, C. J. Colloid Interface Sci. 2022, 608, 1846. doi: 10.1016/j.jcis.2021.10.034  doi: 10.1016/j.jcis.2021.10.034

    34. [34]

      Gao, D.; Deng, P.; Zhang, J.; Zhang, L.; Wang, X.; Yu, H.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202304559. doi: 10.1002/anie.202304559  doi: 10.1002/anie.202304559

    35. [35]

      Isari, A. A.; Mehregan, M.; Mehregan, S.; Hayati, F.; Rezaei Kalantary, R.; Kakavandi, B. J. Hazard. Mater. 2020, 390, 122050. doi: 10.1016/j.jhazmat.2020.122050  doi: 10.1016/j.jhazmat.2020.122050

    36. [36]

      Kuang, P.; Sayed, M.; Fan, J.; Cheng, B.; Yu, J. Adv. Energy Mater. 2020, 10, 1903802. doi: 10.1002/aenm.201903802  doi: 10.1002/aenm.201903802

    37. [37]

      Liu, T.; Yang, Y.; Cao, S.; Xiang, R.; Zhang, L.; Yu, J. Adv. Mater. 2023, 35, 2207752. doi: 10.1002/adma.202207752  doi: 10.1002/adma.202207752

    38. [38]

      Yang, Y.; Zhu, B.; Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Appl. Catal. B 2022, 317, 121788. doi: 10.1016/j.apcatb.2022.121788  doi: 10.1016/j.apcatb.2022.121788

    39. [39]

      Zou, J.; Wu, J.; Wang, Y.; Deng, F.; Jiang, J.; Zhang, Y.; Liu, S.; Li, N.; Zhang, H.; Yu, J.; et al. Chem. Soc. Rev. 2022, 51, 2972. doi: 10.1039/D0CS01487G  doi: 10.1039/D0CS01487G

    40. [40]

      Yang, H.; Zhang, J.; Dai, K. Chin. J. Catal. 2022, 43, 255. doi: 10.1016/S1872-2067(20)63784-6  doi: 10.1016/S1872-2067(20)63784-6

    41. [41]

      Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P.; Li, X. Chin. J. Catal. 2022, 43, 178. doi: 10.1016/S1872-2067(21)63910-4  doi: 10.1016/S1872-2067(21)63910-4

    42. [42]

      Dai, M.; He, Z.; Zhang, P.; Li, X.; Wang, S. J. Mater. Sci. Technol. 2022, 122, 231. doi: 10.1016/j.jmst.2022.02.014  doi: 10.1016/j.jmst.2022.02.014

    43. [43]

      Li, R.; Luan, Q.; Dong, C.; Dong, W.; Tang, W.; Wang, G.; Lu, Y. Appl. Catal. B 2021, 286, 119832. doi: 10.1016/j.apcatb.2020.119832  doi: 10.1016/j.apcatb.2020.119832

    44. [44]

      Xu, M.; Yang, J.; Sun, C.; Liu, L.; Cui, Y.; Liang, B. Chem. Eng. J. 2020, 389, 124402. doi: 10.1016/j.cej.2020.124402  doi: 10.1016/j.cej.2020.124402

    45. [45]

      Xie, Q.; He, W.; Liu, S.; Li, C.; Zhang, J.; Wong, P. Chin. J. Catal. 2020, 41, 140. doi: 10.1016/S1872-2067(19)63481-9  doi: 10.1016/S1872-2067(19)63481-9

    46. [46]

      Chawla, A.; Sudhaik, A.; Sonu; Raizada, P.; Ahamad, T.; Van Le, Q.; Nguyen, V.; Thakur, S.; Mishra, A. K.; Selvasembian, R.; et al. Coord. Chem. Rev. 2023, 491, 215246. doi: 10.1016/j.ccr.2023.215246  doi: 10.1016/j.ccr.2023.215246

    47. [47]

      Lan, Y.; Zhang, Y.; Huang, X.; Bi, Y. Angew. Chem. Int. Ed. 2024, 63, e202407736. doi: 10.1002/anie.202407736  doi: 10.1002/anie.202407736

    48. [48]

      Tian, N.; Hu, C.; Wang, J.; Zhang, Y.; Ma, T.; Huang, H. Coord. Chem. Rev. 2022, 463, 214515. doi: 10.1016/j.ccr.2022.214515  doi: 10.1016/j.ccr.2022.214515

    49. [49]

      Li, Q.; Zhang, J.; Xu, W.; Wang, H.; Zhou, J.; Chen, Q.; Chen, J.; Chen, D. Chem. Eng. J. 2023, 471, 144658. doi: 10.1016/j.cej.2023.144658  doi: 10.1016/j.cej.2023.144658

    50. [50]

      Guo, J.; Li, X.; Liang, J.; Yuan, X.; Jiang, L.; Yu, H.; Sun, H.; Zhu, Z.; Ye, S.; Tang, N.; et al. Coord. Chem. Rev. 2021, 443, 214033. doi: 10.1016/j.ccr.2021.214033  doi: 10.1016/j.ccr.2021.214033

    51. [51]

      Vinoth, S.; Wee-Jun, O.; Pandikumar, A. Coord. Chem. Rev. 2022, 464, 214541. doi: 10.1016/j.ccr.2022.214541  doi: 10.1016/j.ccr.2022.214541

    52. [52]

      Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016. doi: 10.3866/PKU.WHXB202209016  doi: 10.3866/PKU.WHXB202209016

    53. [53]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39, 2212026. doi: 10.3866/PKU.WHXB202212026  doi: 10.3866/PKU.WHXB202212026

    54. [54]

      Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003  doi: 10.1016/j.jmst.2023.03.003

    55. [55]

      Li, K.; Gong, K.; Liu, J.; Yang, Y.; Nabi, I.; Bacha, A.-U.-R.; Cheng, H.; Han, J.; Zhang, L. J. Hazard. Mater. 2021, 418, 126207. doi: 10.1016/j.jhazmat.2021.126207  doi: 10.1016/j.jhazmat.2021.126207

    56. [56]

      Pang, Z.; Wang, B.; Yan, X.; Wang, C.; Yin, S.; Li, H.; Xia, J. Appl. Surf. Sci. 2022, 578, 151921. doi: 10.1016/j.apsusc.2021.151921  doi: 10.1016/j.apsusc.2021.151921

    57. [57]

      He, Y.; Li, J.; Li, K.; Sun, M.; Yuan, C.; Chen, R.; Sheng, J.; Leng, G.; Dong, F. Chin. J. Catal. 2020, 41, 1430. doi: 10.1016/s1872-2067(20)63612-9  doi: 10.1016/s1872-2067(20)63612-9

    58. [58]

      He, R.; Zheng, Y.; Feng, J.; Mo, Q.; Gong, K.; Xu, D. J. Mater. Sci. Technol. 2024, 178, 112. doi: 10.1016/j.jmst.2023.07.076  doi: 10.1016/j.jmst.2023.07.076

    59. [59]

      Supriya, S. Coord. Chem. Rev. 2023, 479, 215010. doi: 10.1016/j.ccr.2022.215010  doi: 10.1016/j.ccr.2022.215010

    60. [60]

      Wang, D.; Lin, Z.; Gu, H.; Li, Y.; Li, H.; Shao, J. Prog. Chem. 2023, 35, 606. doi: 10.7536/PC220934  doi: 10.7536/PC220934

    61. [61]

      Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi: 10.3866/PKU.WHXB202309031  doi: 10.3866/PKU.WHXB202309031

    62. [62]

      Liu, L.; Dai, K.; Zhang, J.; Li, L. J. Colloid Interface Sci. 2021, 604, 844. doi: 10.1016/j.jcis.2021.07.064  doi: 10.1016/j.jcis.2021.07.064

    63. [63]

      Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi: 10.1002/adma.202300643  doi: 10.1002/adma.202300643

    64. [64]

      Ozer, M. S.; Eroglu, Z.; Yalin, A. S.; Kılıç, M.; Rothlisberger, U.; Metin, O. Appl. Catal. B 2022, 304, 120957. doi: 10.1016/j.apcatb.2021.120957  doi: 10.1016/j.apcatb.2021.120957

    65. [65]

      Zhang, D.; Cui, X.; Liu, L.; Xu, Y.; Zhao, J.; Han, J.; Zheng, W. ACS Appl. Mater. Interfaces 2021, 13, 21582. doi: 10.1021/acsami.1c01470  doi: 10.1021/acsami.1c01470

    66. [66]

      Sun, Y.; Suriyaprakash, J.; Shan, L.; Xu, H.; Zhang, J.; Chen, G.; Zhang, Y.; Wu, H.; Li, X.; Dong, L.; et al. Appl. Catal. B 2024, 355, 124209. doi: 10.1016/j.apcatb.2024.124209  doi: 10.1016/j.apcatb.2024.124209

    67. [67]

      Philo, D.; Luo, S.; He, C.; Wang, Q.; Ichihara, F.; Jia, L.; Oshikiri, M.; Pang, H.; Wang, Y.; Li, S.; et al. Adv. Funct. Mater. 2022, 32, 2206811. doi: 10.1002/adfm.202206811  doi: 10.1002/adfm.202206811

    68. [68]

      Liu, T.; Huang, J.; Huang, Z.; Luo, Q.; Wu, H.; Meng, Y.; He, C.; Li, H. Chem. Eng. J. 2024, 486, 150209. doi: 10.1016/j.cej.2024.150209  doi: 10.1016/j.cej.2024.150209

    69. [69]

      Lei, B.; Cui, W.; Sheng, J.; Wang, H.; Chen, P.; Li, J.; Sun, Y.; Dong, F. Sci. Bull. 2020, 65, 467. doi: 10.1016/j.scib.2020.01.007  doi: 10.1016/j.scib.2020.01.007

    70. [70]

      Lan, M.; Dong, X.; Zheng, N.; Zhang, X.; Wang, Y.; Zhang, X. J. Mater. Sci. Technol. 2023, 167, 237. doi: 10.1016/j.jmst.2023.05.037  doi: 10.1016/j.jmst.2023.05.037

    71. [71]

      Long, Z.; Zhang, G.; Du, H.; Zhu, J.; Li, J. J. Hazard. Mater. 2021, 407, 124394. doi: 10.1016/j.jhazmat.2020.124394  doi: 10.1016/j.jhazmat.2020.124394

    72. [72]

      Helal, A.; Harraz, F. A.; Ismail, A. A.; Sami, T. M.; Ibrahim, I. Appl. Catal. B 2017, 213, 18. doi: 10.1016/j.apcatb.2017.05.009  doi: 10.1016/j.apcatb.2017.05.009

    73. [73]

      Hu, T.; Dai, K.; Zhang, J.; Zhu, G.; Liang, C. Mater. Lett. 2019, 257, 126740. doi: 10.1016/j.matlet.2019.126740  doi: 10.1016/j.matlet.2019.126740

    74. [74]

      Lu, H.; Hao, Q.; Chen, T.; Zhang, L.; Chen, D.; Ma, C.; Yao, W.; Zhu, Y. Appl. Catal. B 2018, 237, 59. doi: 10.1016/j.apcatb.2018.05.069  doi: 10.1016/j.apcatb.2018.05.069

    75. [75]

      Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi: 10.1016/j.jmst.2021.11.046  doi: 10.1016/j.jmst.2021.11.046

    76. [76]

      Xin, Y.; Zhu, Q.; Gao, T.; Li, X.; Zhang, W.; Wang, H.; Ji, D.; Huang, Y.; Padervand, M.; Yu, F.; et al. Appl. Catal. B 2023, 324, 122238. doi: 10.1016/j.apcatb.2022.122238  doi: 10.1016/j.apcatb.2022.122238

    77. [77]

      Li, X.; Dong, Q.; Li, F.; Zhu, Q.; Tian, Q.; Tian, L.; Zhu, Y.; Pan, B.; Padervand, M.; Wang, C. Appl. Catal. B 2024, 340, 123238. doi: 10.1016/j.apcatb.2023.123238  doi: 10.1016/j.apcatb.2023.123238

    78. [78]

      Xu, Y.; You, Y.; Huang, H.; Guo, Y.; Zhang, Y. J. Hazard. Mater. 2020, 381, 121159. doi: 10.1016/j.jhazmat.2019.121159  doi: 10.1016/j.jhazmat.2019.121159

    79. [79]

      Zhang, Z.; Wen, L.; Liao, S.; Zeng, X.; Zhou, R.; Zeng, Y. Chem. Eng. J. 2023, 474, 145473. doi: 10.1016/j.cej.2023.145473  doi: 10.1016/j.cej.2023.145473

    80. [80]

      Li, Y.; Zhu, C.; Chen, L.; Liu, L.; Zhang, J.; Yang, N.; Li, Y. Chem. Eng. J. 2023, 473, 145282. doi: 10.1016/j.cej.2023.145282  doi: 10.1016/j.cej.2023.145282

    81. [81]

      Li, S.; Cai, M.; Wang, C.; Liu, Y.; Li, N.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 123, 177. doi: 10.1016/j.jmst.2022.02.012  doi: 10.1016/j.jmst.2022.02.012

    82. [82]

      Guan, X.; Zhang, X.; Zhang, C.; Li, R.; Liu, J.; Wang, Y.; Wang, Y.; Fan, C.; Li, Z. J. Colloid Interface Sci. 2023, 644, 426. doi: 10.1016/j.jcis.2023.04.097  doi: 10.1016/j.jcis.2023.04.097

    83. [83]

      Bariki, R.; Bhoi, Y. P.; Pradhan, S. K.; Panda, S.; Nayak, S. K.; Das, K.; Majhi, D.; Mishra, B. G. Sep. Purif. Technol. 2023, 324, 124509. doi: 10.1016/j.seppur.2023.124509  doi: 10.1016/j.seppur.2023.124509

    84. [84]

      Shen, R.; Hao, L.; Ng, Y.; Zhang, P.; Arramel, A.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 2453. doi: 10.1016/S1872-2067(22)64104-4  doi: 10.1016/S1872-2067(22)64104-4

    85. [85]

      Peng, D.; Zeng, H.; Xiong, J.; Liu, F.; Wang, L.; Xu, S.; Yang, Z.; Liu, S. J. Colloid Interface Sci. 2023, 629, 133. doi: 10.1016/j.jcis.2022.09.031  doi: 10.1016/j.jcis.2022.09.031

    86. [86]

      Yang, C.; Zhang, Y.; Yue, F.; Du, R.; Ma, T.; Bian, Y.; Li, R.; Guo, L.; Wang, D.; Fu, F. Appl. Catal. B 2023, 338, 123057. doi: 10.1016/j.apcatb.2023.123057  doi: 10.1016/j.apcatb.2023.123057

    87. [87]

      Chen, L.; Li, C.; Zhao, Y.; Wu, J.; Li, X.; Qiao, Z.; He, P.; Qi, X.; Liu, Z.; Wei, G. Chem. Eng. J. 2021, 425, 131599. doi: 10.1016/j.cej.2021.131599  doi: 10.1016/j.cej.2021.131599

    88. [88]

      Li, H.; Li, R.; Liu, G.; Zhai, M.; Yu, J. Adv. Mater. 2023, 35, 2301307. doi: 10.1002/adma.202301307  doi: 10.1002/adma.202301307

    89. [89]

      Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Chem. Rev. 2022, 122, 10484. doi: 10.1021/acs.chemrev.1c00473  doi: 10.1021/acs.chemrev.1c00473

    90. [90]

      Lv, J.; Zhang, J.; Liu, J.; Li, Z.; Dai, K.; Liang, C. ACS Sustain. Chem. Eng. 2018, 6, 696. doi: 10.1021/acssuschemeng.7b03032  doi: 10.1021/acssuschemeng.7b03032

    91. [91]

      Xu, Y.; Wen, Z.; Wang, T.; Zhang, M.; Ding, C.; Guo, Y.; Jiang, D.; Wang, K. Biosens. Bioelectron. 2020, 166, 112453. doi: 10.1016/j.bios.2020.112453  doi: 10.1016/j.bios.2020.112453

    92. [92]

      Zhang, L.; Yang, C.; Lv, K.; Lu, Y.; Li, Q.; Wu, X.; Li, Y.; Li, X.; Fan, J.; Li, M. Chin. J. Catal. 2019, 40, 755. doi: 10.1016/S1872-2067(19)63320-6  doi: 10.1016/S1872-2067(19)63320-6

    93. [93]

      Zhang, M.; Ke, J.; Xu, D.; Zhang, X.; Liu, H.; Wang, Y.; Yu, J. J. Colloid Interface Sci. 2022, 615, 663. doi: 10.1016/j.jcis.2022.02.026  doi: 10.1016/j.jcis.2022.02.026

    94. [94]

      Yu, J.; Li, X.; Fu, J.; Dai, K. Sci. China Mater. 2024, 67, 379. doi: 10.1007/s40843-024-2779-5  doi: 10.1007/s40843-024-2779-5

    95. [95]

      Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi: 10.1016/S1872-2067(23)64444-4  doi: 10.1016/S1872-2067(23)64444-4

    96. [96]

      Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J. B.; Yu, J. Chin. J. Struct. Chem. 2022, 41, 2206003. doi: 10.14102/j.cnki.0254-5861.2022-0150  doi: 10.14102/j.cnki.0254-5861.2022-0150

    97. [97]

      Li, F.; Zhu, G.; Jiang, J.; Yang, L.; Deng, F.; Arramel; Li, X. J. Mater. Sci. Technol. 2024, 177, 142. doi: 10.1016/j.jmst.2023.08.038  doi: 10.1016/j.jmst.2023.08.038

    98. [98]

      Wang, J.; Wang, Z.; Zhang, J.; Chai, S.; Dai, K.; Low, J. Nanoscale 2022, 14, 18087. doi: 10.1039/d2nr05341a  doi: 10.1039/d2nr05341a

    99. [99]

      Liu, Q.; Du, X.; Li, W.; Dai, W.; Liu, B. Acta Phys. -Chim. Sin. 2024, 40, 2311016. doi: 10.3866/PKU.WHXB202311016  doi: 10.3866/PKU.WHXB202311016

    100. [100]

      Wang, J.; Wang, Z.; Dai, K.; Zhang, J. J. Mater. Sci. Technol. 2023, 165, 187. doi: 10.1016/j.jmst.2023.03.067  doi: 10.1016/j.jmst.2023.03.067

    101. [101]

      Yu, W.; Bie, C. Acta Phys. -Chim. Sin. 2024, 40, 2307022. doi: 10.3866/PKU.WHXB202307022  doi: 10.3866/PKU.WHXB202307022

    102. [102]

      Li, X.; Sun, H.; Xie, Y.; Liang, Y.; Gong, X.; Qin, P.; Jiang, L.; Guo, J.; Liu, C.; Wu, Z. Coord. Chem. Rev. 2022, 467, 214596. doi: 10.1016/j.ccr.2022.214596  doi: 10.1016/j.ccr.2022.214596

    103. [103]

      Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi: 10.1016/j.trechm.2022.08.008  doi: 10.1016/j.trechm.2022.08.008

    104. [104]

      He, R.; Ou, S.; Liu, Y.; Liu, Y.; Xu, D. Chin. J. Catal. 2022, 43, 370. doi: 10.1016/S1872-2067(21)63911-6  doi: 10.1016/S1872-2067(21)63911-6

    105. [105]

      Chen, R.; Xia, J.; Chen, Y.; Shi, H. Acta Phys. -Chim. Sin. 2023, 39, 2209012. doi: 10.3866/PKU.WHXB202209012  doi: 10.3866/PKU.WHXB202209012

    106. [106]

      Xia, B.; He, B.; Zhang, J.; Li, L.; Zhang, Y.; Yu, J.; Ran, J.; Qiao, S. Adv. Energy Mater. 2022, 12, 2201449. doi: 10.1002/aenm.202201449  doi: 10.1002/aenm.202201449

    107. [107]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225  doi: 10.1002/adma.202203225

    108. [108]

      Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi: 10.1002/adma.202400288  doi: 10.1002/adma.202400288

    109. [109]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    110. [110]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    111. [111]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688  doi: 10.1002/anie.202218688

    112. [112]

      He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi: 10.1002/anie.202313172  doi: 10.1002/anie.202313172

    113. [113]

      He, H.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 34, 2315426. doi: 10.1002/adfm.202315426  doi: 10.1002/adfm.202315426

    114. [114]

      Liu, L.; Hu, T.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2021, 42, 46. doi: 10.1016/S1872-2067(20)63560-4  doi: 10.1016/S1872-2067(20)63560-4

    115. [115]

      Wang, Y.; Tang, Y.; Sun, J.; Wu, X.; Liang, H.; Qu, Y.; Jing, L. Appl. Catal. B 2022, 319, 121893. doi: 10.1016/j.apcatb.2022.121893  doi: 10.1016/j.apcatb.2022.121893

    116. [116]

      Li, S.; Wang, C.; Liu, Y.; Cai, M.; Wang, Y.; Zhang, H.; Guo, Y.; Zhao, W.; Wang, Z.; Chen, X. Chem. Eng. J. 2021, 429, 132519. doi: 10.1016/j.cej.2021.132519  doi: 10.1016/j.cej.2021.132519

    117. [117]

      Zhao, X.; You, Y.; Huang, S.; Wu, Y.; Ma, Y.; Zhang, G.; Zhang, Z. Appl. Catal. B 2020, 278, 119251. doi: 10.1016/j.apcatb.2020.119251  doi: 10.1016/j.apcatb.2020.119251

    118. [118]

      Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S.-K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S. Chem. Eng. J. 2021, 419, 129530. doi: 10.1016/j.cej.2021.129530  doi: 10.1016/j.cej.2021.129530

    119. [119]

      Dutta, V.; Sudhaik, A.; Sonu; Raizada, P.; Singh, A.; Ahamad, T.; Thakur, S.; Le, Q. V.; Nguyen, V.-H.; Singh, P. J. Mater. Sci. Technol. 2023, 162, 11. doi: 10.1016/j.jmst.2023.03.037  doi: 10.1016/j.jmst.2023.03.037

    120. [120]

      Li, X.; Zhang, J.; Wang, Z.; Fu, J.; Li, S.; Dai, K.; Liu, M. Chem. Eur. J. 2023, 29, e202202669. doi: 10.1002/chem.202202669  doi: 10.1002/chem.202202669

    121. [121]

      Chen, Q.; Wang, X.; Zhou, Y.; Tan, Y.; Li, H.; Fu, J.; Liu, M. Adv. Mater. 2024, 36, 2303902. doi: 10.1002/adma.202303902  doi: 10.1002/adma.202303902

    122. [122]

      Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Chem. Rev. 2019, 119, 3962. doi: 10.1021/acs.chemrev.8b00400  doi: 10.1021/acs.chemrev.8b00400

    123. [123]

      Lin, M.; Luo, M.; Liu, Y.; Shen, J.; Long, J.; Zhang, Z. Chin. J. Catal. 2023, 50, 239. doi: 10.1016/S1872-2067(23)64477-8  doi: 10.1016/S1872-2067(23)64477-8

    124. [124]

      Kuang, P.; Ni, Z.; Zhu, B.; Lin, Y.; Yu, J. Adv. Mater. 2023, 35, 2303030. doi: 10.1002/adma.202303030  doi: 10.1002/adma.202303030

    125. [125]

      Zhang, Y.; Guo, P.; Guo, S.; Xin, X.; Wang, Y.; Huang, W.; Wang, M.; Yang, B.; Jorge Sobrido, A.; Ghasemi, J. B.; et al. Angew. Chem. Int. Ed. 2022, 61, e202209703. doi: 10.1002/anie.202209703  doi: 10.1002/anie.202209703

    126. [126]

      Wang, Y.; Zhu, B.; Cheng, B.; Macyk, W.; Kuang, P.; Yu, J. Appl. Catal. B 2022, 314, 121503. doi: 10.1016/j.apcatb.2022.121503  doi: 10.1016/j.apcatb.2022.121503

    127. [127]

      Gao, D.; Xu, J.; Wang, L.; Zhu, B.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2108475. doi: 10.1002/adma.202108475  doi: 10.1002/adma.202108475

    128. [128]

      He, R.; Ran, J. J. Mater. Sci. Technol. 2023, 157, 107. doi: 10.1016/j.jmst.2023.02.020  doi: 10.1016/j.jmst.2023.02.020

    129. [129]

      Ruan, X.; Meng, D.; Huang, C.; Xu, M.; Jiao, D.; Cheng, H.; Cui, Y.; Li, Z.; Ba, K.; Xie, T.; et al. Adv. Mater. 2024, 36, 2309199. doi: 10.1002/adma.202309199  doi: 10.1002/adma.202309199

    130. [130]

      Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi: 10.1016/j.chempr.2022.04.013  doi: 10.1016/j.chempr.2022.04.013

    131. [131]

      Guo, W.; Luo, H.; Jiang, Z.; Shangguan, W. Chin. J. Catal. 2022, 43, 316. doi: 10.1016/s1872-2067(21)63846-9  doi: 10.1016/s1872-2067(21)63846-9

    132. [132]

      Chen, Y.; Zhao, C.; Ma, S.; Xing, P.; Hu, X.; Wu, Y.; He, Y. Inorg. Chem. Front. 2019, 6, 3083. doi: 10.1039/C9QI00782B  doi: 10.1039/C9QI00782B

    133. [133]

      Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2023, 42, 100202. doi: 10.1016/j.cjsc.2023.100202  doi: 10.1016/j.cjsc.2023.100202

    134. [134]

      Yang, C.; Wan, S.; Zhu, B.; Yu, J.; Cao, S. Angew. Chem. Int. Ed. 2022, 61, e202208438. doi: 10.1002/anie.202208438  doi: 10.1002/anie.202208438

    135. [135]

      Cheng, J.; Wang, W.; Zhang, J.; Wan, S.; Cheng, B.; Yu, J.; Cao, S. Angew. Chem. Int. Ed. 2024, 63, e202406310. doi: 10.1002/anie.202406310  doi: 10.1002/anie.202406310

    136. [136]

      Yang, C.; Cheng, B.; Xu, J.; Yu, J.; Cao, S. EnergyChem 2024, 6, 100116. doi: 10.1016/j.enchem.2023.100116  doi: 10.1016/j.enchem.2023.100116

    137. [137]

      Oliva, M. A.; Ortiz-Bustos, J.; Cruz-Yusta, M.; Martin, F.; del Hierro, I.; Pérez, Y.; Pavlovic, I.; Sánchez, L. Chem. Eng. J. 2023, 470, 144088. doi: 10.1016/j.cej.2023.144088  doi: 10.1016/j.cej.2023.144088

    138. [138]

      Zhang, R.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M. H.; Huang, B. Appl. Catal. B 2019, 254, 463. doi: 10.1016/j.apcatb.2019.05.024  doi: 10.1016/j.apcatb.2019.05.024

    139. [139]

      Wang, B.; Zhang, W.; Liu, G.; Chen, H.; Weng, Y.; Li, H.; Chu, P.; Xia, J. Adv. Funct. Mater. 2022, 32, 2202885. doi: 10.1002/adfm.202202885  doi: 10.1002/adfm.202202885

    140. [140]

      Benisti, I.; Nandi, R.; Amdursky, N.; Paz, Y. Appl. Catal. B 2020, 278, 119351. doi: 10.1016/j.apcatb.2020.119351  doi: 10.1016/j.apcatb.2020.119351

    141. [141]

      Xie, J.; Lu, Z.; Feng, Y.; Huang, J.; Hu, J.; Hao, A.; Cao, Y. Nano Res. 2023, 17, 297. doi: 10.1007/s12274-023-5828-2  doi: 10.1007/s12274-023-5828-2

    142. [142]

      Wang, H.; Zhang, W.; Li, X.; Li, J.; Cen, W.; Li, Q.; Dong, F. Appl. Catal. B 2018, 225, 218. doi: 10.1016/j.apcatb.2017.11.079  doi: 10.1016/j.apcatb.2017.11.079

    143. [143]

      Li, J.; Yin, S.; Dong, F.; Cen, W.; Chu, Y. ACS Appl. Mater. Interfaces 2017, 9, 19861. doi: 10.1021/acsami.7b04026  doi: 10.1021/acsami.7b04026

    144. [144]

      Li, X.; Zhang, W.; Cui, W.; Sun, Y.; Jiang, G.; Zhang, Y.; Huang, H.; Dong, F. Appl. Catal. B 2018, 221, 482. doi: 10.1016/j.apcatb.2017.09.046  doi: 10.1016/j.apcatb.2017.09.046

    145. [145]

      Bian, Y.; He, H.; Dawson, G.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 514. doi: 10.1007/s40843-023-2725-y  doi: 10.1007/s40843-023-2725-y

    146. [146]

      Li, J.; Wu, X.; Wan, Z.; Chen, H.; Zhang, G. Appl. Catal. B 2019, 243, 667. doi: 10.1016/j.apcatb.2018.10.067  doi: 10.1016/j.apcatb.2018.10.067

    147. [147]

      Chang, X.; Xie, L.; Sha, W.; Lu, K.; Qi, Q.; Dong, C.; Yan, X.; Gondal, M. A.; Rashid, S. G.; Dai, Q.; et al. Appl. Catal. B 2017, 201, 495. doi: 10.1016/j.apcatb.2016.08.049  doi: 10.1016/j.apcatb.2016.08.049

    148. [148]

      He, R.; Chen, R.; Luo, J.; Zhang, S.; Xu, D. Acta Phys. -Chim. Sin. 2021, 37, 2011022. doi: 10.3866/PKU.WHXB202011022  doi: 10.3866/PKU.WHXB202011022

    149. [149]

      Wu, Q.; Zhang, Q.; Li, W.; Luo, L.; Du, P. Chem. Eng. J. 2023, 475, 146192. doi: 10.1016/j.cej.2023.146192  doi: 10.1016/j.cej.2023.146192

    150. [150]

      Dong, X.; Zhang, W.; Sun, Y.; Li, J.; Cen, W.; Cui, Z.; Huang, H.; Dong, F. J. Catal. 2018, 357, 41. doi: 10.1016/j.jcat.2017.10.004  doi: 10.1016/j.jcat.2017.10.004

    151. [151]

      Wei, S.; Zhong, H.; Wang, H.; Song, Y.; Jia, C.; Anpo, M.; Wu, L. Appl. Catal. B 2022, 305, 121032. doi: 10.1016/j.apcatb.2021.121032  doi: 10.1016/j.apcatb.2021.121032

    152. [152]

      Ren, Q.; He, Y.; Wang, H.; Sun, Y.; Dong, F. Research 2023, 6, 0244. doi: 10.34133/research.0244  doi: 10.34133/research.0244

  • 加载中
    1. [1]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    2. [2]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    5. [5]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    6. [6]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    7. [7]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    9. [9]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    11. [11]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    12. [12]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    14. [14]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    15. [15]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    19. [19]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

Metrics
  • PDF Downloads(9)
  • Abstract views(1223)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return