Citation: Yuanyin Cui, Jinfeng Zhang, Hailiang Chu, Lixian Sun, Kai Dai. Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240501. doi: 10.3866/PKU.WHXB202405016
-
Semiconductor photocatalysis makes full use of solar energy, serving as a potent tactic to solve the worldwide energy deficit and safeguard the environment. Bismuth-based photocatalysts stand out among various photocatalysts as a significant area, due to their unique crystal structure, favorable mixed electron band structure, diverse composition, and huge potential for solar catalytic conversion. This document reviews the rational design of Bi-based photocatalysts for solar energy. Recent advancements in diverse Bi-based photocatalysts such as Layered Bi, Bismuth element, BiVO4, Bi2S2, and Bi2O3 are highlighted. Secondly, the synthesis strategies of Bi-based catalysts, including hydrothermal/solvothermal, chemical precipitation, and solid-state reaction, are summarized. Third, various structural regulation methods to improve the photocatalytic performance, including defect regulation, heteroatom doping, morphology, SPR effect utilization, and heterojunction construction, are systematically introduced. Additionally, a focus is given to the exclusive applications of Bi-based photocatalysts, including CO2 reduction, water decomposition, N2 fixation, NOx removal, H2O2 production, and selective organic synthesis, followed by an introduction of advanced in situ characterization techniques of the Bi-based photocatalysts. Ultimately, the forthcoming obstacles are underscored, and a future outlook for Bi-based photocatalysts is anticipated. This review aims to offer detailed instructions for comprehensively understanding and logically crafting effective bismuth-based photocatalysts, while also encouraging novel ideas and advances in energy and environmental fields, contributing to the goals of green chemistry and sustainable development.
-
Keywords:
- Photocatalysis,
- Bi,
- Heterojunction,
- Charge separation,
- Application
-
-
[1]
(1) Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi:10.1038/238037a0
-
[2]
(2) Yang, H.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2111. doi:10.1016/S1872-2067(22)64096-8
-
[3]
(3) Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys. -Chim. Sin. 2023, 39, 2209037. doi:10.3866/PKU.WHXB202209037
-
[4]
(4) Zhu, J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023, 49, 5. doi:10.1016/S1872-2067(23)64438-9
-
[5]
(5) Li, X.; Zhang, J.; Dai, K.; Fan, K.; Liang, C. Sol. RRL 2021, 5, 2100788. doi:10.1002/solr.202100788
-
[6]
(6) Li, H.; Zhou, H.; Zhou, Y.; Hu, J.; Miyauchi, M.; Fu, J.; Liu, M. Chin. J. Catal. 2022, 43, 519. doi:10.1016/S1872-2067(21)63866-4
-
[7]
(7) Zhang, Y.; Gao, M.; Chen, S.; Wang, H.; Huo, P. Acta Phys. -Chim. Sin. 2023, 39, 2211051. doi:10.3866/PKU.WHXB202211051
-
[8]
(8) Meng, S.; Chen, C.; Gu, X.; Wu, H.; Meng, Q.; Zhang, J.; Chen, S.; Fu, X.; Liu, D.; Lei, W. Appl. Catal. B 2021, 285, 119789. doi:10.1016/j.apcatb.2020.119789
-
[9]
(9) Ding, H.; Shen, R.; Huang, K.; Huang, C.; Liang, G.; Zhang, P.; Li, X. Adv. Funct. Mater. 2024, 34, 2400065. doi:10.1002/adfm.202400065
-
[10]
(10) Cao, Y.; Gou, H.; Zhu, P.; Jin, Z. Chin. J. Struct. Chem. 2022, 41, 2206079. doi:10.14102/j.cnki.0254-5861.2022-0042
-
[11]
(11) Cao, S.; Zhong, B.; Bie, C.; Cheng, B.; Xu, F. Acta Phys. -Chim. Sin. 2024, 40, 2307016. doi:10.3866/PKU.WHXB202307016
-
[12]
(12) Jiang, Z.; Zhang, Y.; Zhang, L.; Cheng, B.; Wang, L. Chin. J. Catal. 2022, 43, 226. doi:10.1016/S1872-2067(21)63832-9
-
[13]
(13) Zhang, K.; Li, Y.; Yuan, S.; Zhang, L.; Wang, Q. Acta Phys. -Chim. Sin. 2023, 39, 2212010. doi:10.3866/PKU.WHXB202212010
-
[14]
(14) Dai, K.; Lv, J.; Zhang, J.; Zhu, G.; Geng, L.; Liang, C. ACS Sustain. Chem. Eng. 2018, 6, 12817. doi:10.1021/acssuschemeng.8b02064
-
[15]
(15) Xu, J.; Gao, D.; Yu, H.; Wang, P.; Zhu, B.; Wang, L.; Fan, J. Chin. J. Catal. 2022, 43, 215. doi:10.1016/S1872-2067(21)63830-5
-
[16]
(16) Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Adv. Mater. 2019, 31, 1807660. doi:10.1002/adma.201807660
-
[17]
(17) Jiang, Z.; Cheng, B.; Zhang, L.; Zhang, Z.; Bie, C. Chin. J. Catal. 2023, 52, 32. doi:10.1016/S1872-2067(23)64502-4
-
[18]
(18) Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi:10.1038/s41467-021-25007-6
-
[19]
(19) Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi:10.1038/s41467-024-49004-7
-
[20]
(20) Lu, K.; Xue, F.; Liu, F.; Li, M.; Fu, W.; Peng, H.; Zhang, C.; Huang, J.; Gao, Z.; Huang, H. Adv. Energy Mater. 2023, 13, 2301158. doi:10.1002/aenm.202301158
-
[21]
(21) Zhao, B.; Zhong, W.; Chen, F.; Wang, P.; Bie, C.; Yu, H. Chin. J. Catal. 2023, 52, 127. doi:10.1016/S1872-2067(23)64491-2
-
[22]
(22) Chen, D.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Mamatkulov, S.; Dai, K.; Low, J. Mater. Today Phys. 2024, 40, 101315. doi:10.1016/j.mtphys.2023.101315
-
[23]
(23) Tao, S.; Wan, S.; Huang, Q.; Li, C.; Yu, J.; Cao, S. Chin. J. Struct. Chem. 2022, 41, 2206048. doi:10.14102/j.cnki.0254-5861.2022-0068
-
[24]
(24) Zhang, M.; Li, Y.; Chang, W.; Zhu, W.; Zhang, L.; Jin, R.; Xing, Y. Chin. J. Catal. 2022, 43, 526. doi:10.1016/S1872-2067(21)63872-X
-
[25]
(25) Chen, D.; Wang, Z.; Fu, J.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 541. doi:10.1007/s40843-023-2770-8
-
[26]
(26) Liu, B.; Cai, J.; Zhang, J.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 51, 204. doi:10.1016/S1872-2067(23)64466-3
-
[27]
(27) Zhang, J.; Liu, J.; Meng, Z.; Jana, S.; Wang, L.; Zhu, B. J. Mater. Sci. Technol. 2023, 159, 1. doi:10.1016/j.jmst.2023.02.044
-
[28]
(28) Bai, J.; Shen, R.; Jiang, Z.; Zhang, P.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 359. doi:10.1016/S1872-2067(21)63883-4
-
[29]
(29) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi:10.1002/adfm.202214470
-
[30]
(30) Hu, T.; Dai, K.; Zhang, J.; Chen, S. Appl. Catal. B 2020, 269, 118844. doi:10.1016/j.apcatb.2020.118844
-
[31]
(31) Huang, Y.; Dai, K.; Zhang, J.; Dawson, G. Chin. J. Catal. 2022, 43, 2539. doi:10.1016/S1872-2067(21)64024-X
-
[32]
(32) Gao, R.; He, H.; Bai, J.; Hao, L.; Shen, R.; Zhang, P.; Li, Y.; Li, X. Chin. J. Struct. Chem. 2022, 41, 2206031. doi:10.14102/j.cnki.0254-5861.2022-0096
-
[33]
(33) Mei, F.; Dai, K.; Zhang, J.; Li, L.; Liang, C. J. Colloid Interface Sci. 2022, 608, 1846. doi:10.1016/j.jcis.2021.10.034
-
[34]
(34) Gao, D.; Deng, P.; Zhang, J.; Zhang, L.; Wang, X.; Yu, H.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202304559. doi:10.1002/anie.202304559
-
[35]
(35) Isari, A. A.; Mehregan, M.; Mehregan, S.; Hayati, F.; Rezaei Kalantary, R.; Kakavandi, B. J. Hazard. Mater. 2020, 390, 122050. doi:10.1016/j.jhazmat.2020.122050
-
[36]
(36) Kuang, P.; Sayed, M.; Fan, J.; Cheng, B.; Yu, J. Adv. Energy Mater. 2020, 10, 1903802. doi:10.1002/aenm.201903802
-
[37]
(37) Liu, T.; Yang, Y.; Cao, S.; Xiang, R.; Zhang, L.; Yu, J. Adv. Mater. 2023, 35, 2207752. doi:10.1002/adma.202207752
-
[38]
(38) Yang, Y.; Zhu, B.; Wang, L.; Cheng, B.; Zhang, L.; Yu, J. Appl. Catal. B 2022, 317, 121788. doi:10.1016/j.apcatb.2022.121788
-
[39]
(39) Zou, J.; Wu, J.; Wang, Y.; Deng, F.; Jiang, J.; Zhang, Y.; Liu, S.; Li, N.; Zhang, H.; Yu, J.; et al. Chem. Soc. Rev. 2022, 51, 2972. doi:10.1039/D0CS01487G
-
[40]
(40) Yang, H.; Zhang, J.; Dai, K. Chin. J. Catal. 2022, 43, 255. doi:10.1016/S1872-2067(20)63784-6
-
[41]
(41) Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P.; Li, X. Chin. J. Catal. 2022, 43, 178. doi:10.1016/S1872-2067(21)63910-4
-
[42]
(42) Dai, M.; He, Z.; Zhang, P.; Li, X.; Wang, S. J. Mater. Sci. Technol. 2022, 122, 231. doi:10.1016/j.jmst.2022.02.014
-
[43]
(43) Li, R.; Luan, Q.; Dong, C.; Dong, W.; Tang, W.; Wang, G.; Lu, Y. Appl. Catal. B 2021, 286, 119832. doi:10.1016/j.apcatb.2020.119832
-
[44]
(44) Xu, M.; Yang, J.; Sun, C.; Liu, L.; Cui, Y.; Liang, B. Chem. Eng. J. 2020, 389, 124402. doi:10.1016/j.cej.2020.124402
-
[45]
(45) Xie, Q.; He, W.; Liu, S.; Li, C.; Zhang, J.; Wong, P. Chin. J. Catal. 2020, 41, 140. doi:10.1016/S1872-2067(19)63481-9
-
[46]
(46) Chawla, A.; Sudhaik, A.; Sonu; Raizada, P.; Ahamad, T.; Van Le, Q.; Nguyen, V.; Thakur, S.; Mishra, A. K.; Selvasembian, R.; et al. Coord. Chem. Rev. 2023, 491, 215246. doi:10.1016/j.ccr.2023.215246
-
[47]
(47) Lan, Y.; Zhang, Y.; Huang, X.; Bi, Y. Angew. Chem. Int. Ed. 2024, 63, e202407736. doi:10.1002/anie.202407736
-
[48]
(48) Tian, N.; Hu, C.; Wang, J.; Zhang, Y.; Ma, T.; Huang, H. Coord. Chem. Rev. 2022, 463, 214515. doi:10.1016/j.ccr.2022.214515
-
[49]
(49) Li, Q.; Zhang, J.; Xu, W.; Wang, H.; Zhou, J.; Chen, Q.; Chen, J.; Chen, D. Chem. Eng. J. 2023, 471, 144658. doi:10.1016/j.cej.2023.144658
-
[50]
(50) Guo, J.; Li, X.; Liang, J.; Yuan, X.; Jiang, L.; Yu, H.; Sun, H.; Zhu, Z.; Ye, S.; Tang, N.; et al. Coord. Chem. Rev. 2021, 443, 214033. doi:10.1016/j.ccr.2021.214033
-
[51]
(51) Vinoth, S.; Wee-Jun, O.; Pandikumar, A. Coord. Chem. Rev. 2022, 464, 214541. doi:10.1016/j.ccr.2022.214541
-
[52]
(52) Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016. doi:10.3866/PKU.WHXB202209016
-
[53]
(53) Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39, 2212026. doi:10.3866/PKU.WHXB202212026
-
[54]
(54) Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi:10.1016/j.jmst.2023.03.003
-
[55]
(55) Li, K.; Gong, K.; Liu, J.; Yang, Y.; Nabi, I.; Bacha, A.-U.-R.; Cheng, H.; Han, J.; Zhang, L. J. Hazard. Mater. 2021, 418, 126207. doi:10.1016/j.jhazmat.2021.126207
-
[56]
(56) Pang, Z.; Wang, B.; Yan, X.; Wang, C.; Yin, S.; Li, H.; Xia, J. Appl. Surf. Sci. 2022, 578, 151921. doi:10.1016/j.apsusc.2021.151921
-
[57]
(57) He, Y.; Li, J.; Li, K.; Sun, M.; Yuan, C.; Chen, R.; Sheng, J.; Leng, G.; Dong, F. Chin. J. Catal. 2020, 41, 1430. doi:10.1016/s1872-2067(20)63612-9
-
[58]
(58) He, R.; Zheng, Y.; Feng, J.; Mo, Q.; Gong, K.; Xu, D. J. Mater. Sci. Technol. 2024, 178, 112. doi:10.1016/j.jmst.2023.07.076
-
[59]
(59) Supriya, S. Coord. Chem. Rev. 2023, 479, 215010. doi:10.1016/j.ccr.2022.215010
-
[60]
(60) Wang, D.; Lin, Z.; Gu, H.; Li, Y.; Li, H.; Shao, J. Prog. Chem. 2023, 35, 606. doi:10.7536/PC220934
-
[61]
(61) Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi:10.3866/PKU.WHXB202309031
-
[62]
(62) Liu, L.; Dai, K.; Zhang, J.; Li, L. J. Colloid Interface Sci. 2021, 604, 844. doi:10.1016/j.jcis.2021.07.064
-
[63]
(63) Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi:10.1002/adma.202300643
-
[64]
(64) Ozer, M. S.; Eroglu, Z.; Yalin, A. S.; Kılıç, M.; Rothlisberger, U.; Metin, O. Appl. Catal. B 2022, 304, 120957. doi:10.1016/j.apcatb.2021.120957
-
[65]
(65) Zhang, D.; Cui, X.; Liu, L.; Xu, Y.; Zhao, J.; Han, J.; Zheng, W. ACS Appl. Mater. Interfaces 2021, 13, 21582. doi:10.1021/acsami.1c01470
-
[66]
(66) Sun, Y.; Suriyaprakash, J.; Shan, L.; Xu, H.; Zhang, J.; Chen, G.; Zhang, Y.; Wu, H.; Li, X.; Dong, L.; et al. Appl. Catal. B 2024, 355, 124209. doi:10.1016/j.apcatb.2024.124209
-
[67]
(67) Philo, D.; Luo, S.; He, C.; Wang, Q.; Ichihara, F.; Jia, L.; Oshikiri, M.; Pang, H.; Wang, Y.; Li, S.; et al. Adv. Funct. Mater. 2022, 32, 2206811. doi:10.1002/adfm.202206811
-
[68]
(68) Liu, T.; Huang, J.; Huang, Z.; Luo, Q.; Wu, H.; Meng, Y.; He, C.; Li, H. Chem. Eng. J. 2024, 486, 150209. doi:10.1016/j.cej.2024.150209
-
[69]
(69) Lei, B.; Cui, W.; Sheng, J.; Wang, H.; Chen, P.; Li, J.; Sun, Y.; Dong, F. Sci. Bull. 2020, 65, 467. doi:10.1016/j.scib.2020.01.007
-
[70]
(70) Lan, M.; Dong, X.; Zheng, N.; Zhang, X.; Wang, Y.; Zhang, X. J. Mater. Sci. Technol. 2023, 167, 237. doi:10.1016/j.jmst.2023.05.037
-
[71]
(71) Long, Z.; Zhang, G.; Du, H.; Zhu, J.; Li, J. J. Hazard. Mater. 2021, 407, 124394. doi:10.1016/j.jhazmat.2020.124394
-
[72]
(72) Helal, A.; Harraz, F. A.; Ismail, A. A.; Sami, T. M.; Ibrahim, I. Appl. Catal. B 2017, 213, 18. doi:10.1016/j.apcatb.2017.05.009
-
[73]
(73) Hu, T.; Dai, K.; Zhang, J.; Zhu, G.; Liang, C. Mater. Lett. 2019, 257, 126740. doi:10.1016/j.matlet.2019.126740
-
[74]
(74) Lu, H.; Hao, Q.; Chen, T.; Zhang, L.; Chen, D.; Ma, C.; Yao, W.; Zhu, Y. Appl. Catal. B 2018, 237, 59. doi:10.1016/j.apcatb.2018.05.069
-
[75]
(75) Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi:10.1016/j.jmst.2021.11.046
-
[76]
(76) Xin, Y.; Zhu, Q.; Gao, T.; Li, X.; Zhang, W.; Wang, H.; Ji, D.; Huang, Y.; Padervand, M.; Yu, F.; et al. Appl. Catal. B 2023, 324, 122238. doi:10.1016/j.apcatb.2022.122238
-
[77]
(77) Li, X.; Dong, Q.; Li, F.; Zhu, Q.; Tian, Q.; Tian, L.; Zhu, Y.; Pan, B.; Padervand, M.; Wang, C. Appl. Catal. B 2024, 340, 123238. doi:10.1016/j.apcatb.2023.123238
-
[78]
(78) Xu, Y.; You, Y.; Huang, H.; Guo, Y.; Zhang, Y. J. Hazard. Mater. 2020, 381, 121159. doi:10.1016/j.jhazmat.2019.121159
-
[79]
(79) Zhang, Z.; Wen, L.; Liao, S.; Zeng, X.; Zhou, R.; Zeng, Y. Chem. Eng. J. 2023, 474, 145473. doi:10.1016/j.cej.2023.145473
-
[80]
(80) Li, Y.; Zhu, C.; Chen, L.; Liu, L.; Zhang, J.; Yang, N.; Li, Y. Chem. Eng. J. 2023, 473, 145282. doi:10.1016/j.cej.2023.145282
-
[81]
(81) Li, S.; Cai, M.; Wang, C.; Liu, Y.; Li, N.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 123, 177. doi:10.1016/j.jmst.2022.02.012
-
[82]
(82) Guan, X.; Zhang, X.; Zhang, C.; Li, R.; Liu, J.; Wang, Y.; Wang, Y.; Fan, C.; Li, Z. J. Colloid Interface Sci. 2023, 644, 426. doi:10.1016/j.jcis.2023.04.097
-
[83]
(83) Bariki, R.; Bhoi, Y. P.; Pradhan, S. K.; Panda, S.; Nayak, S. K.; Das, K.; Majhi, D.; Mishra, B. G. Sep. Purif. Technol. 2023, 324, 124509. doi:10.1016/j.seppur.2023.124509
-
[84]
(84) Shen, R.; Hao, L.; Ng, Y.; Zhang, P.; Arramel, A.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 2453. doi:10.1016/S1872-2067(22)64104-4
-
[85]
(85) Peng, D.; Zeng, H.; Xiong, J.; Liu, F.; Wang, L.; Xu, S.; Yang, Z.; Liu, S. J. Colloid Interface Sci. 2023, 629, 133. doi:10.1016/j.jcis.2022.09.031
-
[86]
(86) Yang, C.; Zhang, Y.; Yue, F.; Du, R.; Ma, T.; Bian, Y.; Li, R.; Guo, L.; Wang, D.; Fu, F. Appl. Catal. B 2023, 338, 123057. doi:10.1016/j.apcatb.2023.123057
-
[87]
(87) Chen, L.; Li, C.; Zhao, Y.; Wu, J.; Li, X.; Qiao, Z.; He, P.; Qi, X.; Liu, Z.; Wei, G. Chem. Eng. J. 2021, 425, 131599. doi:10.1016/j.cej.2021.131599
-
[88]
(88) Li, H.; Li, R.; Liu, G.; Zhai, M.; Yu, J. Adv. Mater. 2023, 35, 2301307. doi:10.1002/adma.202301307
-
[89]
(89) Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Chem. Rev. 2022, 122, 10484. doi:10.1021/acs.chemrev.1c00473
-
[90]
(90) Lv, J.; Zhang, J.; Liu, J.; Li, Z.; Dai, K.; Liang, C. ACS Sustain. Chem. Eng. 2018, 6, 696. doi:10.1021/acssuschemeng.7b03032
-
[91]
(91) Xu, Y.; Wen, Z.; Wang, T.; Zhang, M.; Ding, C.; Guo, Y.; Jiang, D.; Wang, K. Biosens. Bioelectron. 2020, 166, 112453. doi:10.1016/j.bios.2020.112453
-
[92]
(92) Zhang, L.; Yang, C.; Lv, K.; Lu, Y.; Li, Q.; Wu, X.; Li, Y.; Li, X.; Fan, J.; Li, M. Chin. J. Catal. 2019, 40, 755. doi:10.1016/S1872-2067(19)63320-6
-
[93]
(93) Zhang, M.; Ke, J.; Xu, D.; Zhang, X.; Liu, H.; Wang, Y.; Yu, J. J. Colloid Interface Sci. 2022, 615, 663. doi:10.1016/j.jcis.2022.02.026
-
[94]
(94) Yu, J.; Li, X.; Fu, J.; Dai, K. Sci. China Mater. 2024, 67, 379. doi:10.1007/s40843-024-2779-5
-
[95]
(95) Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2023, 49, 42. doi:10.1016/S1872-2067(23)64444-4
-
[96]
(96) Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J. B.; Yu, J. Chin. J. Struct. Chem. 2022, 41, 2206003. doi:10.14102/j.cnki.0254-5861.2022-0150
-
[97]
(97) Li, F.; Zhu, G.; Jiang, J.; Yang, L.; Deng, F.; Arramel; Li, X. J. Mater. Sci. Technol. 2024, 177, 142. doi:10.1016/j.jmst.2023.08.038
-
[98]
(98) Wang, J.; Wang, Z.; Zhang, J.; Chai, S.; Dai, K.; Low, J. Nanoscale 2022, 14, 18087. doi:10.1039/d2nr05341a
-
[99]
(99) Liu, Q.; Du, X.; Li, W.; Dai, W.; Liu, B. Acta Phys. -Chim. Sin. 2024, 40, 2311016. doi:10.3866/PKU.WHXB202311016
-
[100]
(100) Wang, J.; Wang, Z.; Dai, K.; Zhang, J. J. Mater. Sci. Technol. 2023, 165, 187. doi:10.1016/j.jmst.2023.03.067
-
[101]
(101) Yu, W.; Bie, C. Acta Phys. -Chim. Sin. 2024, 40, 2307022. doi:10.3866/PKU.WHXB202307022
-
[102]
(102) Li, X.; Sun, H.; Xie, Y.; Liang, Y.; Gong, X.; Qin, P.; Jiang, L.; Guo, J.; Liu, C.; Wu, Z. Coord. Chem. Rev. 2022, 467, 214596. doi:10.1016/j.ccr.2022.214596
-
[103]
(103) Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi:10.1016/j.trechm.2022.08.008
-
[104]
(104) He, R.; Ou, S.; Liu, Y.; Liu, Y.; Xu, D. Chin. J. Catal. 2022, 43, 370. doi:10.1016/S1872-2067(21)63911-6
-
[105]
(105) Chen, R.; Xia, J.; Chen, Y.; Shi, H. Acta Phys. -Chim. Sin. 2023, 39, 2209012. doi:10.3866/PKU.WHXB202209012
-
[106]
(106) Xia, B.; He, B.; Zhang, J.; Li, L.; Zhang, Y.; Yu, J.; Ran, J.; Qiao, S. Adv. Energy Mater. 2022, 12, 2201449. doi:10.1002/aenm.202201449
-
[107]
(107) He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi:10.1002/adma.202203225
-
[108]
(108) Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi:10.1002/adma.202400288
-
[109]
(109) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi:10.1002/adma.202107668
-
[110]
(110) Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi:10.1002/adma.202310600
-
[111]
(111) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi:10.1002/anie.202218688
-
[112]
(112) He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi:10.1002/anie.202313172
-
[113]
(113) He, H.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 34, 2315426. doi:10.1002/adfm.202315426
-
[114]
(114) Liu, L.; Hu, T.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2021, 42, 46. doi:10.1016/S1872-2067(20)63560-4
-
[115]
(115) Wang, Y.; Tang, Y.; Sun, J.; Wu, X.; Liang, H.; Qu, Y.; Jing, L. Appl. Catal. B 2022, 319, 121893. doi:10.1016/j.apcatb.2022.121893
-
[116]
(116) Li, S.; Wang, C.; Liu, Y.; Cai, M.; Wang, Y.; Zhang, H.; Guo, Y.; Zhao, W.; Wang, Z.; Chen, X. Chem. Eng. J. 2021, 429, 132519. doi:10.1016/j.cej.2021.132519
-
[117]
(117) Zhao, X.; You, Y.; Huang, S.; Wu, Y.; Ma, Y.; Zhang, G.; Zhang, Z. Appl. Catal. B 2020, 278, 119251. doi:10.1016/j.apcatb.2020.119251
-
[118]
(118) Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S.-K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S. Chem. Eng. J. 2021, 419, 129530. doi:10.1016/j.cej.2021.129530
-
[119]
(119) Dutta, V.; Sudhaik, A.; Sonu; Raizada, P.; Singh, A.; Ahamad, T.; Thakur, S.; Le, Q. V.; Nguyen, V.-H.; Singh, P. J. Mater. Sci. Technol. 2023, 162, 11. doi:10.1016/j.jmst.2023.03.037
-
[120]
(120) Li, X.; Zhang, J.; Wang, Z.; Fu, J.; Li, S.; Dai, K.; Liu, M. Chem. Eur. J. 2023, 29, e202202669. doi:10.1002/chem.202202669
-
[121]
(121) Chen, Q.; Wang, X.; Zhou, Y.; Tan, Y.; Li, H.; Fu, J.; Liu, M. Adv. Mater. 2024, 36, 2303902. doi:10.1002/adma.202303902
-
[122]
(122) Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Chem. Rev. 2019, 119, 3962. doi:10.1021/acs.chemrev.8b00400
-
[123]
(123) Lin, M.; Luo, M.; Liu, Y.; Shen, J.; Long, J.; Zhang, Z. Chin. J. Catal. 2023, 50, 239. doi:10.1016/S1872-2067(23)64477-8
-
[124]
(124) Kuang, P.; Ni, Z.; Zhu, B.; Lin, Y.; Yu, J. Adv. Mater. 2023, 35, 2303030. doi:10.1002/adma.202303030
-
[125]
(125) Zhang, Y.; Guo, P.; Guo, S.; Xin, X.; Wang, Y.; Huang, W.; Wang, M.; Yang, B.; Jorge Sobrido, A.; Ghasemi, J. B.; et al. Angew. Chem. Int. Ed. 2022, 61, e202209703. doi:10.1002/anie.202209703
-
[126]
(126) Wang, Y.; Zhu, B.; Cheng, B.; Macyk, W.; Kuang, P.; Yu, J. Appl. Catal. B 2022, 314, 121503. doi:10.1016/j.apcatb.2022.121503
-
[127]
(127) Gao, D.; Xu, J.; Wang, L.; Zhu, B.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2108475. doi:10.1002/adma.202108475
-
[128]
(128) He, R.; Ran, J. J. Mater. Sci. Technol. 2023, 157, 107. doi:10.1016/j.jmst.2023.02.020
-
[129]
(129) Ruan, X.; Meng, D.; Huang, C.; Xu, M.; Jiao, D.; Cheng, H.; Cui, Y.; Li, Z.; Ba, K.; Xie, T.; et al. Adv. Mater. 2024, 36, 2309199. doi:10.1002/adma.202309199
-
[130]
(130) Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi:10.1016/j.chempr.2022.04.013
-
[131]
(131) Guo, W.; Luo, H.; Jiang, Z.; Shangguan, W. Chin. J. Catal. 2022, 43, 316. doi:10.1016/s1872-2067(21)63846-9
-
[132]
(132) Chen, Y.; Zhao, C.; Ma, S.; Xing, P.; Hu, X.; Wu, Y.; He, Y. Inorg. Chem. Front. 2019, 6, 3083. doi:10.1039/C9QI00782B
-
[133]
(133) Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2023, 42, 100202. doi:10.1016/j.cjsc.2023.100202
-
[134]
(134) Yang, C.; Wan, S.; Zhu, B.; Yu, J.; Cao, S. Angew. Chem. Int. Ed. 2022, 61, e202208438. doi:10.1002/anie.202208438
-
[135]
(135) Cheng, J.; Wang, W.; Zhang, J.; Wan, S.; Cheng, B.; Yu, J.; Cao, S. Angew. Chem. Int. Ed. 2024, 63, e202406310. doi:10.1002/anie.202406310
-
[136]
(136) Yang, C.; Cheng, B.; Xu, J.; Yu, J.; Cao, S. EnergyChem 2024, 6, 100116. doi:10.1016/j.enchem.2023.100116
-
[137]
(137) Oliva, M. A.; Ortiz-Bustos, J.; Cruz-Yusta, M.; Martin, F.; del Hierro, I.; Pérez, Y.; Pavlovic, I.; Sánchez, L. Chem. Eng. J. 2023, 470, 144088. doi:10.1016/j.cej.2023.144088
-
[138]
(138) Zhang, R.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M. H.; Huang, B. Appl. Catal. B 2019, 254, 463. doi:10.1016/j.apcatb.2019.05.024
-
[139]
(139) Wang, B.; Zhang, W.; Liu, G.; Chen, H.; Weng, Y.; Li, H.; Chu, P.; Xia, J. Adv. Funct. Mater. 2022, 32, 2202885. doi:10.1002/adfm.202202885
-
[140]
(140) Benisti, I.; Nandi, R.; Amdursky, N.; Paz, Y. Appl. Catal. B 2020, 278, 119351. doi:10.1016/j.apcatb.2020.119351
-
[141]
(141) Xie, J.; Lu, Z.; Feng, Y.; Huang, J.; Hu, J.; Hao, A.; Cao, Y. Nano Res. 2023, 17, 297. doi:10.1007/s12274-023-5828-2
-
[142]
(142) Wang, H.; Zhang, W.; Li, X.; Li, J.; Cen, W.; Li, Q.; Dong, F. Appl. Catal. B 2018, 225, 218. doi:10.1016/j.apcatb.2017.11.079
-
[143]
(143) Li, J.; Yin, S.; Dong, F.; Cen, W.; Chu, Y. ACS Appl. Mater. Interfaces 2017, 9, 19861. doi:10.1021/acsami.7b04026
-
[144]
(144) Li, X.; Zhang, W.; Cui, W.; Sun, Y.; Jiang, G.; Zhang, Y.; Huang, H.; Dong, F. Appl. Catal. B 2018, 221, 482. doi:10.1016/j.apcatb.2017.09.046
-
[145]
(145) Bian, Y.; He, H.; Dawson, G.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 514. doi:10.1007/s40843-023-2725-y
-
[146]
(146) Li, J.; Wu, X.; Wan, Z.; Chen, H.; Zhang, G. Appl. Catal. B 2019, 243, 667. doi:10.1016/j.apcatb.2018.10.067
-
[147]
(147) Chang, X.; Xie, L.; Sha, W.; Lu, K.; Qi, Q.; Dong, C.; Yan, X.; Gondal, M. A.; Rashid, S. G.; Dai, Q.; et al. Appl. Catal. B 2017, 201, 495. doi:10.1016/j.apcatb.2016.08.049
-
[148]
(148) He, R.; Chen, R.; Luo, J.; Zhang, S.; Xu, D. Acta Phys. -Chim. Sin. 2021, 37, 2011022. doi:10.3866/PKU.WHXB202011022
-
[149]
(149) Wu, Q.; Zhang, Q.; Li, W.; Luo, L.; Du, P. Chem. Eng. J. 2023, 475, 146192. doi:10.1016/j.cej.2023.146192
-
[150]
(150) Dong, X.; Zhang, W.; Sun, Y.; Li, J.; Cen, W.; Cui, Z.; Huang, H.; Dong, F. J. Catal. 2018, 357, 41. doi:10.1016/j.jcat.2017.10.004
-
[151]
(151) Wei, S.; Zhong, H.; Wang, H.; Song, Y.; Jia, C.; Anpo, M.; Wu, L. Appl. Catal. B 2022, 305, 121032. doi:10.1016/j.apcatb.2021.121032
-
[152]
(152) Ren, Q.; He, Y.; Wang, H.; Sun, Y.; Dong, F. Research 2023, 6, 0244. doi:10.34133/research.0244
-
[1]
-
-
[1]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[2]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[3]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[4]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[5]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[6]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[7]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[8]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[9]
Peipei Sun , Jinyuan Zhang , Yanhua Song , Zhao Mo , Zhigang Chen , Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001
-
[10]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[11]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[12]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[13]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[14]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[15]
Tiantian Zheng , Huiyi Wang , Huimin Li , Xuanhe Liu , Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032
-
[16]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[17]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[18]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[19]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[20]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(55)
- HTML views(10)