Citation: Zhao Lu, Hu Lv, Qinzhuang Liu, Zhongliao Wang. Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240500. doi: 10.3866/PKU.WHXB202405005 shu

Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting

  • Corresponding author: Zhongliao Wang, wangzl@chnu.edu.cn
  • Received Date: 7 May 2024
    Revised Date: 27 May 2024
    Accepted Date: 28 May 2024
    Available Online: 4 June 2024

    Fund Project: the Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone HZQB-KCZYB-2020083Shenzhen Science and Technology Program KCXFZ20211020163816023Shenzhen Zhongdi Construction Engineering Co., Ltd. cooperation project 22100245Key Research Project in Natural Sciences for Higher Education Institutions by the Ministry of Education 2022AH050396

  • Photocatalytic water splitting (PWS) provides an optimal approach for the sustainable production of green hydrogen. NH2-modified covalent triazine frameworks (CTFs-NH2) hold potential in PWS due to robust light uptake, optimal charge separation, and considerable redox potential. However, the high surface reaction barriers hinder the efficiency of PWS owing to the conversion difficulty of intermediate products. Modulating the Lewis basicity of NH2 on CTFs offers a feasible route for addressing this challenge. In this work, electron-donating ethyl (C2H5) and electron-withdrawing 5-fluoroethyl groups (C2F5) are introduced at the para position of amine groups, producing C2H5-CTF-NH2 and C2F5-CTF-NH2, to adjust the Lewis basicity of CTF-NH2. Through DFT calculations, the optical properties, excited states, electronic structures, dipole moments, and surface reaction processes of the CTF-NH2, C2H5-CTF-NH2 and C2F5-CTF-NH2 are simulated. The results indicate that the electron-withdrawing C2F5 group can decrease the electron density and Lewis basicity on NH2, thereby lowering the energy barriers for hydrogen and oxygen evolution reactions, effectively ameliorating the PWS efficiency of CTF-NH2. This work unveils an innovative approach for donor-acceptor-regulated CTFs for the application of PWS.
  • 加载中
    1. [1]

      Bie, C.; Wang, L.; Yu, J. Chem 2022, 8, 1567. doi: 10.1016/j.chempr.2022.04.013  doi: 10.1016/j.chempr.2022.04.013

    2. [2]

      Tao, S.; Wan, S.; Huang, Q.; Li, C.; Yu, J.; Cao, S. Chin. J. Struct. Chem. 2022, 41, 2206048. doi: 10.14102/j.cnki.0254-5861.2022-0068  doi: 10.14102/j.cnki.0254-5861.2022-0068

    3. [3]

      Yang, Y.; Wu, J.; Cheng, B.; Zhang, L.; Al-Ghamdi, A. A.; Wageh, S.; Li, Y. Chin. J. Struct. Chem. 2022, 41, 2206006. doi: 10.14102/j.cnki.0254-5861.2022-0124  doi: 10.14102/j.cnki.0254-5861.2022-0124

    4. [4]

      Gao, H.; Zhang, P.; Qin, H.; Zhang, S.; Guo, J. J. Materiomics 2024, 10, 601. doi: 10.1016/j.jmat.2023.08.010  doi: 10.1016/j.jmat.2023.08.010

    5. [5]

      He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225  doi: 10.1002/adma.202203225

    6. [6]

      Van Viet, P.; Nguyen, T.-D.; Bui, D.-P.; Thi, C. M. J. Materiomics 2022, 8, 1. doi: 10.1016/j.jmat.2021.06.006  doi: 10.1016/j.jmat.2021.06.006

    7. [7]

      Zhu, B.; Tan, H.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. J. Materiomics 2021, 7, 988. doi: 10.1016/j.jmat.2021.02.015  doi: 10.1016/j.jmat.2021.02.015

    8. [8]

      Gao, R.; He, H.; Bai, J.; Hao, L.; Shen, R.; Zhang, P.; Li, Y.; Li, X. Chin. J. Struct. Chem. 2022, 41, 2206031. doi: 10.14102/j.cnki.0254-5861.2022-0096  doi: 10.14102/j.cnki.0254-5861.2022-0096

    9. [9]

      Hu, Y.; Li, X.; Wang, W.; Deng, F.; Han, L.; Gao, X.; Feng, Z.; Chen, Z.; Huang, J.; Zeng, F.; Dong, F. Chin. J. Struct. Chem. 2022, 41, 2206069. doi: 10.14102/j.cnki.0254-5861.2022-0103  doi: 10.14102/j.cnki.0254-5861.2022-0103

    10. [10]

      Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Acta Phys.-Chim. Sin. 2023, 39, 2209037. doi: 10.3866/PKU.WHXB202209037  doi: 10.3866/PKU.WHXB202209037

    11. [11]

      Sun, G.; Zhang, J.; Cheng, B.; Yu, H.; Yu, J.; Xu, J. Chem. Eng. J. 2023, 476, 146818. doi: 10.1016/j.cej.2023.146818  doi: 10.1016/j.cej.2023.146818

    12. [12]

      Liu, B.; Cai, J.; Zhang, J.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 51, 204. doi: 10.1016/s1872-2067(23)64466-3  doi: 10.1016/s1872-2067(23)64466-3

    13. [13]

      Cao, S.; Zhong, B.; Bie, C.; Cheng, B.; Xu, F. Acta Phys.-Chim. Sin. 2024, 40, 2307016. doi: 10.3866/PKU.WHXB202307016  doi: 10.3866/PKU.WHXB202307016

    14. [14]

      Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys.-Chim. Sin. 2023, 39, 2212016. doi: 10.3866/PKU.WHXB202212016  doi: 10.3866/PKU.WHXB202212016

    15. [15]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317  doi: 10.1002/adma.202100317

    16. [16]

      Zhang, Y.; Zhang, Z. J. Mater. Sci. Technol. 2024, 171, 147. doi: 10.1016/j.jmst.2023.06.048  doi: 10.1016/j.jmst.2023.06.048

    17. [17]

      Li, Z.; Liu, W.; Chen, C.; Ma, T.; Zhang, J.; Wang, Z. Acta Phys.-Chim. Sin. 2023, 39, 202208030. doi: 10.3866/PKU.WHXB202208030  doi: 10.3866/PKU.WHXB202208030

    18. [18]

      Wang, X.; Zhang, Y.; Jiang, S.; Su, J.; Song, S. J. Mater. Sci. Technol. 2024, 171, 94. doi: 10.1016/j.jmst.2023.06.041  doi: 10.1016/j.jmst.2023.06.041

    19. [19]

      Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat. Commun. 2024, 15, 1313. doi: 10.1038/s41467-024-45604-5  doi: 10.1038/s41467-024-45604-5

    20. [20]

      Sun, P.; Zhang, J.; Song, Y.; Mo, Z.; Chen, Z.; Xu, H. Acta Phys.-Chim. Sin. 2024, 40, 2311001. doi: 10.3866/PKU.WHXB202311001  doi: 10.3866/PKU.WHXB202311001

    21. [21]

      Wu, Y.; Qu, M.; Jiang, S.; Zhang, J.; Song, S. Sci. China Mater. 2024, 67, 524. doi: 10.1007/s40843-023-2760-1  doi: 10.1007/s40843-023-2760-1

    22. [22]

      Hao, L.; Shen, R.; Qin, C.; Li, N.; Hu, H.; Liang, G.; Li, X. Sci. China Mater. 2024, 67, 504. doi: 10.1007/s40843-023-2747-6  doi: 10.1007/s40843-023-2747-6

    23. [23]

      Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys.-Chim. Sin. 2023, 39, 2212009. doi: 10.3866/PKU.WHXB202212009  doi: 10.3866/PKU.WHXB202212009

    24. [24]

      Wang, M.; Wang, P.; Wang, X.; Chen, F.; Yu, H. J. Mater. Sci. Technol. 2024, 174, 168. doi: 10.1016/j.jmst.2023.06.065  doi: 10.1016/j.jmst.2023.06.065

    25. [25]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    26. [26]

      Zhao, B.; Zhong, W.; Chen, F.; Wang, P.; Bie, C.; Yu, H. Chin. J. Catal. 2023, 52, 127. doi: 10.1016/s1872-2067(23)64491-2  doi: 10.1016/s1872-2067(23)64491-2

    27. [27]

      Liu, D.; Sun, B.; Bai, S.; Gao, T.; Zhou, G. Chin. J. Catal. 2023, 50, 273. doi: 10.1016/s1872-2067(23)64462-6  doi: 10.1016/s1872-2067(23)64462-6

    28. [28]

      Yang, W.; Zhang, J.; Xu, Q.; Yang, Y.; Zhang, L. Acta Phys.-Chim. Sin. 2024, 40, 2312014. doi: 10.3866/pku.Whxb202312014  doi: 10.3866/pku.Whxb202312014

    29. [29]

      Yu, W.; Bie, C. Acta Phys.-Chim. Sin. 2024, 40, 2307022. doi: 10.3866/PKU.WHXB202307022  doi: 10.3866/PKU.WHXB202307022

    30. [30]

      Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2023, 42, 100202. doi: 10.1016/j.cjsc.2023.100202  doi: 10.1016/j.cjsc.2023.100202

    31. [31]

      Wang, G.; Lv, S.; Shen, Y.; Li, W.; Lin, L.; Li, Z. J. Materiomics 2024, 10, 315. doi: 10.1016/j.jmat.2023.05.014  doi: 10.1016/j.jmat.2023.05.014

    32. [32]

      He, J.; Wang, X.; Jin, S.; Liu, Z.-Q.; Zhu, M. Chin. J. Catal. 2022, 43, 1306. doi: 10.1016/s1872-2067(21)63936-0  doi: 10.1016/s1872-2067(21)63936-0

    33. [33]

      Hao, L.; Shen, R.; Liang, G.; Kang, M.; Huang, C.; Zhang, P.; Li, X. Appl. Catal. B-Environ. Energy 2024, 348, 123837. doi: 10.1016/j.apcatb.2024.123837  doi: 10.1016/j.apcatb.2024.123837

    34. [34]

      Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi: 10.1002/adma.202400288  doi: 10.1002/adma.202400288

    35. [35]

      Sun, R.; Hu, X.; Shu, C.; Zheng, L.; Wang, S.; Wang, X.; Tan, B. Chin. J. Catal. 2023, 55, 159. doi: 10.1016/s1872-2067(23)64552-8  doi: 10.1016/s1872-2067(23)64552-8

    36. [36]

      Yu, Z.; Yue, X.; Fan, J.; Xiang, Q. ACS Catal. 2022, 12, 6345. doi: 10.1021/acscatal.2c01563  doi: 10.1021/acscatal.2c01563

    37. [37]

      Wang, N.; Cheng, L.; Liao, Y.; Xiang, Q. Small 2023, 19, 2300109. doi: 10.1002/smll.202300109  doi: 10.1002/smll.202300109

    38. [38]

      Niu, Q.; Mi, L.; Chen, W.; Li, Q.; Zhong, S.; Yu, Y.; Li, L. Chin. J. Catal. 2023, 50, 45. doi: 10.1016/s1872-2067(23)64457-2  doi: 10.1016/s1872-2067(23)64457-2

    39. [39]

      Shen, R.; Hao, L.; Ng, Y. H.; Zhang, P.; Arramel, A.; Li, Y.; Li, X. Chin. J. Catal. 2022, 43, 2453. doi: 10.1016/s1872-2067(22)64104-4  doi: 10.1016/s1872-2067(22)64104-4

    40. [40]

      Zhu, B.; Zhang, L.; Cheng, B.; Yu, Y.; Yu, J. Chin. J. Catal. 2021, 42, 115. doi: 10.1016/s1872-2067(20)63598-7  doi: 10.1016/s1872-2067(20)63598-7

    41. [41]

      Huang, G.; Lin, G.; Niu, Q.; Bi, J.; Wu, L. J. Mater. Sci. Technol. 2022, 116, 41. doi: 10.1016/j.jmst.2021.11.035  doi: 10.1016/j.jmst.2021.11.035

    42. [42]

      Li, Z.; Li, T.; Miao, J.; Zhao, C.; Jing, Y.; Han, F.; Zhang, K.; Yang, X. Sci. China Mater. 2023, 66, 2290. doi: 10.1007/s40843-022-2394-6  doi: 10.1007/s40843-022-2394-6

    43. [43]

      Lu, Z.; Xu, X.; Wang, Z. Sep. Purif. Technol. 2024, 330, 125457. doi: 10.1016/j.seppur.2023.125457  doi: 10.1016/j.seppur.2023.125457

    44. [44]

      Huang, T.; Wang, R.; Zhang, J.; Wang, J.; Ge, H.; Ren, J.; Zheng, Z. Chem. Eng. J. 2023, 467, 143469. doi: 10.1016/j.cej.2023.143469  doi: 10.1016/j.cej.2023.143469

    45. [45]

      Ju, Y.; Wang, Z.; Lin, H.; Hou, R.; Li, H.; Wang, Z.; Zhi, R.; Lu, X.; Tang, Y.; Chen, F. Chem. Eng. J. 2024, 479, 147800. doi: 10.1016/j.cej.2023.147800  doi: 10.1016/j.cej.2023.147800

    46. [46]

      Zheng, L.-L.; Zhang, L.-S.; Chen, Y.; Tian, L.; Jiang, X.-H.; Chen, L.-S.; Xing, Q.-J.; Liu, X.-Z.; Wu, D.-S.; Zou, J.-P. Chin. J. Catal. 2022, 43, 811. doi: 10.1016/s1872-2067(21)63892-5  doi: 10.1016/s1872-2067(21)63892-5

    47. [47]

      Chen, D.; Wang, Z.; Fu, J.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 541. doi: 10.1007/s40843-023-2770-8  doi: 10.1007/s40843-023-2770-8

    48. [48]

      Huang, R.; Zhang, Y.; Li, W.; Zhang, W.; Fang, Y.; Zhang, W.; Cui, A.; Ying, Y.; Shi, X. J. Mater. Sci. Technol. 2024, 170, 167. doi: 10.1016/j.jmst.2023.05.065  doi: 10.1016/j.jmst.2023.05.065

    49. [49]

      Pan, J.; Zhang, A.; Zhang, L.; Dong, P. Chin. J. Catal. 2024, 58, 180. doi: 10.1016/s1872-2067(23)64609-1  doi: 10.1016/s1872-2067(23)64609-1

    50. [50]

      Wang, L.; Cheng, W.; Wang, J.; Yang, J.; Liu, Q. Chin. J. Catal. 2024, 58, 194. doi: 10.1016/s1872-2067(23)64602-9  doi: 10.1016/s1872-2067(23)64602-9

    51. [51]

      Gao, S.; Wan, S.; Yu, J.; Cao, S. Adv. Sustain. Syst. 2022, 7, 2200130. doi: 10.1002/adsu.202200130  doi: 10.1002/adsu.202200130

    52. [52]

      Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. Comput. Phys. Commun. 2021, 267, 108033. doi: 10.1016/j.cpc.2021.108033  doi: 10.1016/j.cpc.2021.108033

    53. [53]

      Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. doi: 10.1002/jcc.22885  doi: 10.1002/jcc.22885

  • 加载中
    1. [1]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    2. [2]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    3. [3]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    6. [6]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    9. [9]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    10. [10]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    11. [11]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    12. [12]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    13. [13]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    14. [14]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    15. [15]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    16. [16]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    19. [19]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    20. [20]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

Metrics
  • PDF Downloads(6)
  • Abstract views(1222)
  • HTML views(159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return