Citation: Shijie Li,  Ke Rong,  Xiaoqin Wang,  Chuqi Shen,  Fang Yang,  Qinghong Zhang. Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240300. doi: 10.3866/PKU.WHXB202403005 shu

Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal

  • Corresponding author: Shijie Li,  Qinghong Zhang, 
  • Received Date: 7 March 2024
    Revised Date: 18 April 2024
    Accepted Date: 19 April 2024

    Fund Project: This work has been financially supported by the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (KF2321), the Natural Science Foundation of Zhejiang Province of China (LY20E080014), and the Science and Technology Project of Zhoushan of China (2022C41011).

  • Photocatalytic pollutant removal provides a competitive manner for wastewater purification. The exploration of efficient and durable photocatalysts is significant for this technique. Integrating carbon quantum dots and S-scheme junction into one system represents an effective strategy for achieving the outstanding photocatalytic efficacy. In comparison to S-scheme junction, photocatalysts combining carbon quantum dots and S-scheme junction harness the merits of both, thus holding greater potential. Herein, a multicomponent fibrous photocatalyst of carbon quantum dots/CdS/Ta3N5that incorporates S-scheme heterojunction and carbon quantum dots is developed for high-efficient destruction of levofloxacin antibiotic. The as-prepared carbon quantum dots/CdS/Ta3N5 heterojunction nanofibers manifest a significantly strengthened photocatalytic levofloxacin degradation activity, with the rate constant (0.0404 min-1) exceeding Ta3N5, CdS/Ta3N5, and CdS by 39.4, 2.1, and 7.2 folds. Such remarkable photocatalytic performance is credited to the unique 1D/0D/0D core-shell heterostructure with compact-bound hetero-interface, which favors the synergistic effect between carbon quantum dots modification and S-scheme junction. This work offers a new way for developing new Ta3N5-based heterojunctions for environmental remediation.
  • 加载中
    1. [1]

      (1) Xu, H.; Jia, Y.; Sun, Z.; Su, J.; Liu, Q. S.; Zhou, Q.; Jiang, G. Eco-Environ. Health 2022, 1, 31. doi:10.1016/j.eehl.2022.04.003

    2. [2]

      (2) Li, S.; Liu, Y.; Wu, Y.; Hu, J.; Zhang, Y.; Sun, Q.; Sun, W.; Geng, J.; Liu, X.; Jia, D.; et al. Natl. Sci. Open 2022, 1, 20220029. doi:10.1360/nso/20220029

    3. [3]

      (3) Loffler, P.; Escher, B. I.; Baduel, C.; Virta, M. P.; Lai, F. Y. Environ. Sci. Technol. 2023, 57, 9474. doi:10.1021/acs.est.2c09854

    4. [4]

      (4) Mangla, D.; Annu; Sharma, A.; Ikram, S. J. Hazard. Mater. 2022, 425, 127946. doi:10.1016/j.jhazmat.2021.127946

    5. [5]

      (5) Rivadeneira-Mendoza, B. F.; Quiroz-Fernández, L. S.; Silva, F. F. D.; Luque, R.; Balu, A. M.; Rodríguez-Díaz, J. M. Environ. Sci.: Nano 2024, 11, 1543. doi:10.1039/D3EN00843F

    6. [6]

      (6) Narayanan, M.; El-sheekh, M.; Ma, Y.; Pugazhendhi, A.; Natarajan, D.; Kandasamy, G.; Raja, R.; Kumar, R. M. S.; Kumarasamy, S.; Sathiyan, G.; et al. Environ. Pollut. 2022, 300, 118922. doi:10.1016/j.envpol.2022.118922

    7. [7]

      (7) Nikoloudakis, E.; López-Duarte, I.; Georgios Charalambidis; Ladomenou, K.; Ince, M.; Coutsolelos, A. G. Chem. Soc. Rev. 2022, 51, 6965. doi:10.1039/d2cs00183g

    8. [8]

      (8) Khandelwal, A.; Maarisetty, D.; SundarBaral, S. Renew. Sust. Energ. Rev. 2022, 167, 112693. doi:10.1016/j.rser.2022.112693

    9. [9]

      (9) Thomas, N.; Mathew, S.; Nair, K. M.; O’Dowd, K.; Forouzandeh, P.; Goswami, A.; Mcgranaghan, G.; Pillai, S. C. Mater. Today Sustain. 2021, 13, 100073. doi:10.1016/j.mtsust.2021.100073

    10. [10]

      (10) Solís, R. R.; Bedia, J.; Rodríguez, J. J.; Belver, C. Chem. Eng. J. 2021, 409, 128110. doi:10.1016/j.cej.2020.128110

    11. [11]

      (11) Nasrollahi, N.; Ghalamchi, L.; Vatanpour, V.; Khataee, A. J. Ind. Eng. Chem. 2021, 93, 101. doi:10.1016/j.jiec.2020.09.031

    12. [12]

      (12) Pornrungroj, C.; Annuar, A. B. M.; Wang, Q.; Rahaman, M.; Bhattacharjee, S.; Andrei, V.; Reisner, E. Nat. Water 2023, 1, 952. doi:10.1038/s44221-023-00139-9

    13. [13]

      (13) Jiao, L.; Jiang, H.-L. Chin. J. Catal. 2023, 45, 1. doi:10.1016/S1872-2067(22)64193-7

    14. [14]

      (14) Qi, K.; Zhuang, C.; Zhang, M.; Gholami, P.; Khataee, A. J. Mater. Sci. Technol. 2022, 123, 243. doi:10.1016/j.jmst.2022.02.019

    15. [15]

      (15) Yuan, X.; Li, L.; Shi, Z.; Liang, H.; Li, S.; Qiao, Z. Adv. Powder Mater. 2022, 1, 100026. doi:10.1016/j.apmate.2021.12.002

    16. [16]

      (16) Jeon, I.; Ryberg, E. C.; Alvarez, P. J. J.; Kim, J.-H. Nat. Sustain. 2022, 5, 801. doi:10.1038/s41893-022-00915-7

    17. [17]

      (17) Yao, F.; Fang, C.; Cui, J.; Dai, L.; Zhang, X.; Xue, L.; Xiong, P.; Fu, Y.; Zhang, W.; Sun, J.; et al. Natl. Sci. Open 2023, 2, 20220032. doi:10.1360/nso/20220032

    18. [18]

      (18) Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. J. Am. Chem. Soc. 2012, 134, 6751. doi:10.1021/ja300823a

    19. [19]

      (19) Actis, A.; Melchionna, M.; Filippini, G.; Fornasiero, P.; Prato, M.; Salvadori, E.; Chiesa, M. Angew. Chem. Int. Ed. 2022, 61, e202210640. doi:10.1002/anie.202210640

    20. [20]

      (20) Zhang, F.; Li, X.; Dong, X.; Hao, H.; Lang, X. Chin. J. Catal. 2022, 43, 2395. doi:doi:10.1016/S1872-2067(22)64127-5

    21. [21]

      (21) Liu, J.; Guo, C.; Wu, N.; Li, C.; Qu, R.; Wang, Z.; Jin, R.; Qiao, Y.; He, Z.; Lu, J.; et al. Chem. Eng. J. 2022, 435, 134627. doi:10.1016/j.cej.2022.134627

    22. [22]

      (22) Zhu, Y. Acta Phys. -Chim. Sin. 2021, 37, 2011005. doi:10.3866/PKU.WHXB202011005

    23. [23]

      (23) Shang, W.; Liu, W.; Cai, X.; Hu, J.; Guo, J.; Xin, C.; Li, Y.; Zhang, N.; Wang, N.; Hao, C.; et al. Adv. Powder Mater. 2023, 2, 100094. doi:10.1016/j.apmate.2022.100094

    24. [24]

      (24) Osotsi, M. I.; Xiong, Y.; Fu, S.; Zhang, W.; Di, Z. Nanoscale 2022, 14, 8130. doi:10.1039/D2NR01424F.

    25. [25]

      (25) Gao, X.; Yang, N.; Feng, J.; Liao, J.; Hou, S.; Ma, X.; Su, D.; Yu, X.; Yang, Z.; Safaei, J.; Wang, D.; Wang, G. Natl. Sci. Open 2023, 2, 20220037. doi:10.1360/nso/20220037

    26. [26]

      (26) Khanal, V.; Balayeva, N.; Günnemann, C.; Mamiyev, Z.; Diler, R.; Bahnemann, D.; Subramania, V. Appl. Catal. B 2021, 291, 119974. doi:10.1016/j.apcatb.2021.119974

    27. [27]

      (27) Wang, Z.; Seo, J.; Hisatomi, T.; Nakabayashi, M.; Xiao, J.; Chen, S.; Lin, L.; Pan, Z.; Krause, M.; Yin, N.; et al. Nano Res. 2022, 16, 4562. doi:10.1007/s12274-022-4732-5

    28. [28]

      (28) Pihosh, Y.; Nandal, V.; Higashi, T.; Higashi, T. Adv. Energy Mater. 2023, 13, 2301327. doi:10.1002/aenm.202301327

    29. [29]

      (29) Pihosh, Y.; Nandal, V.; Nandal, V.; Shoji, R.; Bekarevich, R.; Higashi, T.; Nicolosi, V.; Matsuzaki, H.; Seki, K.; Domen, K. ACS Energy Lett. 2023, 8, 2106. doi:10.1021/acsenergylett.3c00539

    30. [30]

      (30) Dong, B.; Cui, J.; Gao, Y.; Qi, Y.; Zhang, F.; Li, C. Adv. Mater. 2019, 31, 1808185. doi:10.1002/adma.201808185

    31. [31]

      (31) Wang, L.; Zhang, B.; Rui, Q. ACS Catal. 2018, 8, 10564. doi:10.1021/acscatal.8b03111

    32. [32]

      (32) Rudd, P. N.; Tereniak, S. J.; Lopez, R. ACS Appl. Mater. Interfaces 2023, 15, 7969. doi:10.1021/acsami.2c19275

    33. [33]

      (33) Matsui, Y.; Yamada, T.; Suzuki, S.; Yoshii, T.; Nishihara, H.; Teshima, K. ACS Appl. Energy Mater. 2021, 4, 2690. doi:10.1021/acsaem.0c03231

    34. [34]

      (34) Stanley, P. M.; Haimerl, J.; Shustova, N. B.; Fischer, R. A.; Warnan, J. Nat. Chem. 2022, 14, 1342. doi:10.1038/s41557-022-01093-x

    35. [35]

      (35) Sepehrmansourie, H.; Alamgholiloo, H.; Pesyan, N. N.; Zolfigol, M. A. Appl. Catal. B 2023, 321, 122082. doi:10.1016/j.apcatb.2022.122082

    36. [36]

      (36) Zhao, Y.; Qin, X.; Zhao, X.; Wang, X.; Tan, H.; Sun, H.; Yan, G.; Li, H.; Ho, W.; Lee, S.-C. Chin. J. Catal. 2022, 43, 771. doi:10.1016/S1872-2067(21)63843-3

    37. [37]

      (37) Wei, Z.; Yan, J.; Guo, W.; Shangguan, W. Chin. J. Catal. 2023, 48, 279. doi:10.1016/S1872-2067(23)64414-6

    38. [38]

      (38) Xiao, W.; Yu, H.; Xu, C.; Pu, Z.; Cheng, X.; Yu, F.; Liu, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 180, 193. doi:10.1016/j.jmst.2023.08.021

    39. [39]

      (39) Liu, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 139, 167. doi:10.1016/j.jmst.2022.08.030

    40. [40]

      (40) Liu, C.; Xiao, W.; Liu, X.; Wang, Q.; Hu, J.; Zhang, S.; Xu, J.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 161, 123. doi:10.1016/j.jmst.2023.04.007

    41. [41]

      (41) Wang, Z.; Sun, Z.; Yin, H.; Wei, H.; Peng, Z.; Pang, Y. X.; Jia, G.; Zhao, H.; Pang, C. H.; Yin, Z. eScience 2023, 3, 100136. doi:10.1016/j.esci.2023.100136

    42. [42]

      (42) Sun, X.; Li, L.; Jin, S.; Shao, W.; Wang, H.; Zhang, X.; Xie, Y. eScience 2023, 3, 100095. doi:10.1016/j.esci.2023.100095

    43. [43]

      (43) Huang, W.; Bo, T.; Zuo, S.; Wang, Y.; Chen, J.; Ould-Chikh, S.; Li, Y.; Zhou, W.; Zhang, J.; Zhang, H. SusMat 2022, 2, 466. doi:10.1002/sus2.76

    44. [44]

      (44) Zhao, N.; Peng, J.; Wang, J.; Zhai, M. Acta Phys. -Chim. Sin. 2022, 38, 2004046. doi:10.3866/PKU.WHXB202004046

    45. [45]

      (45) Sun, K.; Zhao, Y.; Yin, J.; Jin, J.; Liu, H.; Xi, P. Acta Phys. -Chim. Sin. 2022, 38, 2107005. doi:10.3866/PKU.WHXB202107005

    46. [46]

      (46) Xing, Y.; Liu, S. Chin. J. Struc. Chem. 2022, 41, 2209056. doi:10.14102/j.cnki.0254-5861.2022-0188

    47. [47]

      (47) Fu, W.; Fan, J.; Xiang, Q. Chin. J. Struct. Chem. 2022, 41, 2206039. doi:10.14102/j.cnki.0254-5861.2022-0090

    48. [48]

      (48) Zhong, W.; Xu, J.; Wang, P.; Zhu, B.; Fan, J.; Yu, H. Chin. J. Catal. 2022, 43, 1074. doi:10.1016/S1872-2067(21)63969-4

    49. [49]

      (49) Li, X.; Liu, T.; Zhang, Y.; Cai, J.; He, M.; Li, M.; Chen, Z.; Zhang, L. Adv. Fiber Mater. 2022, 4, 1620. doi:10.1007/s42765-022-00189-w

    50. [50]

      (50) Ma, H.; Zhao, F.; Li, M.; Wang, P.; Fu, Y.; Wang, G.; Liu, X. Adv. Powder Mater. 2023, 2, 100117. doi:10.1016/j.apmate.2023.100117

    51. [51]

      (51) Muelas-Ramos, V.; Sampaio, M. J.; Silva, C. G.; Bedia, J.; Rodriguez, J. J.; Faria, J. L.; Belver, C. J. Hazard. Mater. 2021, 416, 126199. doi:10.1016/j.jhazmat.2021.126199

    52. [52]

      (52) Zhu, H.; Zhen, C.; Chen, X.; Feng, S.; Li, B.; Du, Y.; Liu, G.; Cheng, H.-M. Sci. Bull. 2022, 67, 2420. doi:10.1016/j.scib.2022.11.018

    53. [53]

      (53) Wang, Q.; Pornrungroj, C.; Linley, S.; Reisner, E. Nat. Energy 2022, 7, 13. doi:10.1038/s41560-021-00919-1

    54. [54]

      (54) Andrei, V.; Ucoski, G. M.; Pornrungroj, C.; Uswachoke, C.; Wang, Q.; Achilleos, D. S.; Kasap, H.; Sokol, K. P.; Jagt, R. A.; Lu, H.; et al. Nature 2022, 608, 518. doi:10.1038/s41586-022-04978-6

    55. [55]

      (55) Yan, T.; Zhang, X.; Liu, H.; Jin, Z. Chin. J. Struct. Chem. 2022, 41, 2201047. doi:10.14102/j.cnki.0254-5861.2021-0057

    56. [56]

      (56) Lin, G.; Zhang, C.; Xu, X. J. Mater. Sci. Technol. 2024, 154, 241. doi:10.1016/j.jmst.2022.12.069

    57. [57]

      (57) Das, P. K.; Sivasankaran, R. P.; Arunachalam, M.; Subhash, K. R.; Ha, J.-S.; Ahn, K.-S.; HyungKang, S. Appl. Surf. Sci. 2021, 565, 150456. doi:10.1016/j.apsusc.2021.150456

    58. [58]

      (58) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi:10.1002/adma.202107668

    59. [59]

      (59) Wang, C.; You, C.; Rong, K.; Shen, C.; Fang, Y.; Li, S. Acta Phys. -Chim. Sin. 2024, 40, 2307045. doi:10.3866/PKU.WHXB202307045

    60. [60]

      (60) Dong, K.; Shen, C.; Yan, R.; Liu, Y.; Zhuang, C.; Li, S. Acta Phys. -Chim. Sin. 2024, 40, 2310013. doi:10.3866/PKU.WHXB202310013

    61. [61]

      (61) Li, S.; Dong, K.; Cai, M.; Li, X.; Chen, X. eScience 2024, 4, 100208. doi:10.1016/j.esci.2023.100208

    62. [62]

      (62) Li, S.; You, C.; Rong, K.; Zhuang, C.; Chen, X.; Zhang, B. Adv. Powder Mater. 2024, 3, 100183. doi:10.1016/j.apmate.2024.100183

    63. [63]

      (63) Liu, Z.; Fan, S.; Li, X.; Niu, Z.; Wang, J.; Bai, C.; Duan, J.; O.Tadéb, M.; Liu, S. Appl. Catal., B 2023, 327, 122416. doi:10.1016/j.apcatb.2023.122416

    64. [64]

      (64) He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi:10.1016/S1872-2067(23)64420-1

    65. [65]

      (65) Cai, X.; Du, J.; Zhong, G.; Zhang, Y.; Mao, L.; Lou, Z. Acta Phys. -Chim. Sin. 2023, 39, 2302017. doi:10.3866/PKU.WHXB202302017

    66. [66]

      (66) Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi:10.1016/j.trechm.2022.08.008

    67. [67]

      (67) Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi:10.1002/adma.202310600

    68. [68]

      (68) Zhang, Z.; Wang, M.; Wang, F. Chem Catal. 2022, 2, 1394. doi:10.1016/j.checat.2022.04.001

    69. [69]

      (69) He, J.; Hu, L.; Shao, C.; Jiang, S.; Sun, C.; Song, S. ACS Nano 2021, 15, 18006. doi:10.1021/acsnano.1c06524

    70. [70]

      (70) Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi:10.1002/adma.202100317

    71. [71]

      (71) Li, P.; Yan, X.; Gao, S.; Cao, R. Chem. Eng. J. 2021, 421, 129870. doi:10.1016/j.cej.2021.129870

    72. [72]

      (72) Zhou, P.; Zhang, Q.; Chao, Y.; Wang, L.; Li, Y.; Chen, H.; Gu, L.; Guo, S. Chem 2021, 7, 1033. doi:10.1016/j.chempr.2021.01.007

    73. [73]

      (73) Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi:10.1016/j.jmst.2023.03.054

    74. [74]

      (74) Lee, D. E.; Mameda, N.; Reddy, K. P.; Abraham, B. M.; Jo, W. K.; Tonda, S. J Mater. Sci. Technol. 2023, 161, 74. doi:10.1016/j.jmst.2023.03.024

    75. [75]

      (75) Li, S.; Cai, M.; Wang, C.; Liu, Y. Adv. Fiber Mater. 2023, 5, 994. doi:10.1007/s42765-022-00253-5

    76. [76]

      (76) Mandal, S.; Adhikari, S.; Choi, S.; Lee, Y.; Kim, D.-H. Chem. Eng. J. 2022, 444, 136609. doi:10.1016/j.cej.2022.136609

    77. [77]

      (77) González-González, R. B.; Sharma, A.; Parra-Saldívar, R.; Ramirez-Mendoza, R. A.; Bilal, M.; Iqbal, H. M. N. J. Hazard. Mater. 2022, 423, 127145. doi:10.1016/j.jhazmat.2021.127145

    78. [78]

      (78) Akbar, K.; Moretti, E.; Vomiero, A. Adv. Optical Mater. 2021, 9, 2100532. doi:10.1002/adom.202100532

    79. [79]

      (79) Ðorđević, L.; Arcudi, F.; Cacioppo, M.; Prato, M. Nat. Nanotechnol. 2022, 17, 112. doi:10.1038/s41565-021-01051-7

    80. [80]

      (80) Raghavan, A.; Sarkar, S.; Nagappagari, L. R.; Bojja, S.; MuthukondaVenkatakrishnan, S.; Ghosh, S. Ind. Eng. Chem. Res. 2020, 59, 13060. doi:10.1021/acs.iecr.0c01663

    81. [81]

      (81) Molaei, M. J. Sol. Energy 2020, 196, 549. doi:10.1016/j.solener.2019.12.036

    82. [82]

      (82) Luo, H.; Guo, Q.; Szilágyi, P. Á.; Jorge, A. B.; Titirici, M.-M. Trends Chem. 2020, 2, 623. doi:10.1016/j.trechm.2020.04.007

    83. [83]

      (83) Casadevall, C.; Lage, A.; Mu, M.; Greer, H. F.; Antón-García, D.; Butt, J. N.; Jeuken, L. J. C.; Watson, G. W.; García-Melchor, M.; Reisner, E. Nanoscale 2023, 15, 15775. doi:10.1039/d3nr03300g

    84. [84]

      (84) Arvnd, M.; Hemmati, S. Sens. Actuators B 2017, 238, 346. doi:10.1016/j.snb.2016.07.066

    85. [85]

      (85) Zhang, J.; Wang, X.; Shen, K.; Lu, W.; Wang, J.; Chen, F. Adv. Fiber Mater. 2023, 5, 168. doi:10.1007/s42765-022-00205-z

    86. [86]

      (86) Wang, Z.; Li, J.; Qiao, Y.; Liu, X.; Zheng, Y.; Li, Z.; Shen, J.; Zhang, Y.; Zhu, S.; Jiang, H.; et al. Adv. Fiber Mater. 2023, 5, 484. doi:10.1007/s42765-022-00234-8

    87. [87]

      (87) Su, B.; Huang, H.; Ding, Z.; Roeffaers, M. B. J.; Wang, S.; Long, J. J. Mater. Sci. Technol. 2022, 124, 164. doi:10.1016/j.jmst.2022.01.030

    88. [88]

      (88) Fan, Z.; Guo, X.; Yang, M.; Jin, Z. Chin. J. Catal. 2022, 43, 2708. doi:10.1016/S1872-2067(21)64053-6

    89. [89]

      (89) Liang, Z.; Xue, Y.; Wang, X.; Zhang, X.; Tian, J.; Cui, H. Nano Mater. Sci. 2023, 5, 202. doi:10.1016/j.nanoms.2022.03.001

    90. [90]

      (90) Zou, Z.; Zhang, H.; Lan, J.; Luo, J.; Xie, Y.; Li, Y.; Lü, J.; Cao, R. Nano Mater. Sci. 2023, doi:10.1016/j.nanoms.2022.11.001

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    3. [3]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    4. [4]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    8. [8]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    9. [9]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    10. [10]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    12. [12]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    15. [15]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    18. [18]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    19. [19]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    20. [20]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(21)
  • Abstract views(1183)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return