Citation: Shijie Li, Ke Rong, Xiaoqin Wang, Chuqi Shen, Fang Yang, Qinghong Zhang. Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal[J]. Acta Physico-Chimica Sinica, ;2024, 40(12): 240300. doi: 10.3866/PKU.WHXB202403005 shu

Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal

  • Corresponding author: Shijie Li, lishijie@zjou.edu.cn Qinghong Zhang, zhangqh@dhu.edu.cn
  • Received Date: 7 March 2024
    Revised Date: 18 April 2024
    Accepted Date: 19 April 2024
    Available Online: 23 April 2024

    Fund Project: the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials KF2321the Natural Science Foundation of Zhejiang Province of China LY20E080014the Science and Technology Project of Zhoushan of China 2022C41011

  • Photocatalytic pollutant removal provides a competitive manner for wastewater purification. The exploration of efficient and durable photocatalysts is significant for this technique. Integrating carbon quantum dots and S-scheme junction into one system represents an effective strategy for achieving the outstanding photocatalytic efficacy. In comparison to S-scheme junction, photocatalysts combining carbon quantum dots and S-scheme junction harness the merits of both, thus holding greater potential. Herein, a multicomponent fibrous photocatalyst of carbon quantum dots/CdS/Ta3N5 that incorporates S-scheme heterojunction and carbon quantum dots is developed for high-efficient destruction of levofloxacin antibiotic. The as-prepared carbon quantum dots/CdS/Ta3N5 heterojunction nanofibers manifest a significantly strengthened photocatalytic levofloxacin degradation activity, with the rate constant (0.0404 min−1) exceeding Ta3N5, CdS/Ta3N5, and CdS by 39.4, 2.1, and 7.2 folds. Such remarkable photocatalytic performance is credited to the unique 1D/0D/0D core-shell heterostructure with compact-bound hetero-interface, which favors the synergistic effect between carbon quantum dots modification and S-scheme junction. This work offers a new way for developing new Ta3N5-based heterojunctions for environmental remediation.
  • 加载中
    1. [1]

      Xu, H.; Jia, Y.; Sun, Z.; Su, J.; Liu, Q. S.; Zhou, Q.; Jiang, G. Eco-Environ. Health 2022, 1, 31. doi: 10.1016/j.eehl.2022.04.003  doi: 10.1016/j.eehl.2022.04.003

    2. [2]

      Li, S.; Liu, Y.; Wu, Y.; Hu, J.; Zhang, Y.; Sun, Q.; Sun, W.; Geng, J.; Liu, X.; Jia, D.; et al. Natl. Sci. Open 2022, 1, 20220029. doi: 10.1360/nso/20220029  doi: 10.1360/nso/20220029

    3. [3]

      Loffler, P.; Escher, B. I.; Baduel, C.; Virta, M. P.; Lai, F. Y. Environ. Sci. Technol. 2023, 57, 9474. doi: 10.1021/acs.est.2c09854  doi: 10.1021/acs.est.2c09854

    4. [4]

      Mangla, D.; Annu; Sharma, A.; Ikram, S. J. Hazard. Mater. 2022, 425, 127946. doi: 10.1016/j.jhazmat.2021.127946  doi: 10.1016/j.jhazmat.2021.127946

    5. [5]

      Rivadeneira-Mendoza, B. F.; Quiroz-Fernández, L. S.; Silva, F. F. D.; Luque, R.; Balu, A. M.; Rodríguez-Díaz, J. M. Environ. Sci. : Nano 2024, 11, 1543. doi: 10.1039/D3EN00843F  doi: 10.1039/D3EN00843F

    6. [6]

      Narayanan, M.; El-sheekh, M.; Ma, Y.; Pugazhendhi, A.; Natarajan, D.; Kandasamy, G.; Raja, R.; Kumar, R. M. S.; Kumarasamy, S.; Sathiyan, G.; et al. Environ. Pollut. 2022, 300, 118922. doi: 10.1016/j.envpol.2022.118922  doi: 10.1016/j.envpol.2022.118922

    7. [7]

      Nikoloudakis, E.; Lo´pez-Duarte, I.; Georgios Charalambidis; Ladomenou, K.; Ince, M.; Coutsolelos, A. G. Chem. Soc. Rev. 2022, 51, 6965. doi: 10.1039/d2cs00183g  doi: 10.1039/d2cs00183g

    8. [8]

      Khandelwal, A.; Maarisetty, D.; SundarBaral, S. Renew. Sust. Energ. Rev. 2022, 167, 112693. doi: 10.1016/j.rser.2022.112693  doi: 10.1016/j.rser.2022.112693

    9. [9]

      Thomas, N.; Mathew, S.; Nair, K. M.; O'Dowd, K.; Forouzandeh, P.; Goswami, A.; Mcgranaghan, G.; Pillai, S. C. Mater. Today Sustain. 2021, 13, 100073. doi: 10.1016/j.mtsust.2021.100073  doi: 10.1016/j.mtsust.2021.100073

    10. [10]

      Solís, R. R.; Bedia, J.; Rodríguez, J. J.; Belver, C. Chem. Eng. J. 2021, 409, 128110. doi: 10.1016/j.cej.2020.128110  doi: 10.1016/j.cej.2020.128110

    11. [11]

      Nasrollahi, N.; Ghalamchi, L.; Vatanpour, V.; Khataee, A. J. Ind. Eng. Chem. 2021, 93, 101. doi: 10.1016/j.jiec.2020.09.031  doi: 10.1016/j.jiec.2020.09.031

    12. [12]

      Pornrungroj, C.; Annuar, A. B. M.; Wang, Q.; Rahaman, M.; Bhattacharjee, S.; Andrei, V.; Reisner, E. Nat. Water 2023, 1, 952. doi: 10.1038/s44221-023-00139-9  doi: 10.1038/s44221-023-00139-9

    13. [13]

      Jiao, L.; Jiang, H.-L. Chin. J. Catal. 2023, 45, 1. doi: 10.1016/S1872-2067(22)64193-7  doi: 10.1016/S1872-2067(22)64193-7

    14. [14]

      Qi, K.; Zhuang, C.; Zhang, M.; Gholami, P.; Khataee, A. J. Mater. Sci. Technol. 2022, 123, 243. doi: 10.1016/j.jmst.2022.02.019  doi: 10.1016/j.jmst.2022.02.019

    15. [15]

      Yuan, X.; Li, L.; Shi, Z.; Liang, H.; Li, S.; Qiao, Z. Adv. Powder Mater. 2022, 1, 100026. doi: 10.1016/j.apmate.2021.12.002  doi: 10.1016/j.apmate.2021.12.002

    16. [16]

      Jeon, I.; Ryberg, E. C.; Alvarez, P. J. J.; Kim, J.-H. Nat. Sustain. 2022, 5, 801. doi: 10.1038/s41893-022-00915-7  doi: 10.1038/s41893-022-00915-7

    17. [17]

      Yao, F.; Fang, C.; Cui, J.; Dai, L.; Zhang, X.; Xue, L.; Xiong, P.; Fu, Y.; Zhang, W.; Sun, J.; Zhu, J. Natl. Sci. Open 2023, 2, 20220032. doi: 10.1360/nso/20220032  doi: 10.1360/nso/20220032

    18. [18]

      Gordon, T. R.; Cargnello, M.; Paik, T.; Mangolini, F.; Weber, R. T.; Fornasiero, P.; Murray, C. B. J. Am. Chem. Soc. 2012, 134, 6751. doi: 10.1021/ja300823a  doi: 10.1021/ja300823a

    19. [19]

      Actis, A.; Melchionna, M.; Filippini, G.; Fornasiero, P.; Prato, M.; Salvadori, E.; Chiesa, M. Angew. Chem. Int. Ed. 2022, 61, e202210640. doi: 10.1002/anie.202210640  doi: 10.1002/anie.202210640

    20. [20]

      Zhang, F.; Li, X.; Dong, X.; Hao, H.; Lang, X. Chin. J. Catal. 2022, 43, 2395. doi: doi:10.1016/S1872-2067(22)64127-5  doi: 10.1016/S1872-2067(22)64127-5

    21. [21]

      Liu, J.; Guo, C.; Wu, N.; Li, C.; Qu, R.; Wang, Z.; Jin, R.; Qiao, Y.; He, Z.; Lu, J.; et al. Chem. Eng. J. 2022, 435, 134627. doi: 10.1016/j.cej.2022.134627  doi: 10.1016/j.cej.2022.134627

    22. [22]

      Zhu, Y. Acta Phys.-Chim. Sin. 2021, 37, 2011005. doi: 10.3866/PKU.WHXB202011005  doi: 10.3866/PKU.WHXB202011005

    23. [23]

      Shang, W.; Liu, W.; Cai, X.; Hu, J.; Guo, J.; Xin, C.; Li, Y.; Zhang, N.; Wang, N.; Hao, C.; Shi, Y. Adv. Powder Mater. 2023, 2, 100094. doi: 10.1016/j.apmate.2022.100094  doi: 10.1016/j.apmate.2022.100094

    24. [24]

      Osotsi, M. I.; Xiong, Y.; Fu, S.; Zhang, W.; Di, Z. Nanoscale 2022, 14, 8130. doi: 10.1039/D2NR01424F.  doi: 10.1039/D2NR01424F

    25. [25]

      Gao, X.; Yang, N.; Feng, J.; Liao, J.; Hou, S.; Ma, X.; Su, D.; Yu, X.; Yang, Z.; Safaei, J.; Wang, D.; Wang, G. Natl. Sci. Open 2023, 2, 20220037. doi: 10.1360/nso/20220037  doi: 10.1360/nso/20220037

    26. [26]

      Khanal, V.; Balayeva, N.; Günnemann, C.; Mamiyev, Z.; Diler, R.; Bahnemann, D.; Subramania, V. Appl. Catal. B 2021, 291, 119974. doi: 10.1016/j.apcatb.2021.119974  doi: 10.1016/j.apcatb.2021.119974

    27. [27]

      Wang, Z.; Seo, J.; Hisatomi, T.; Nakabayashi, M.; Xiao, J.; Chen, S.; Lin, L.; Pan, Z.; Krause, M.; Yin, N.; et al. Nano Res. 2022, 16, 4562. doi: 10.1007/s12274-022-4732-5  doi: 10.1007/s12274-022-4732-5

    28. [28]

      Pihosh, Y.; Nandal, V.; Higashi, T.; Higashi, T. Adv. Energy Mater. 2023, 13, 2301327. doi: 10.1002/aenm.202301327  doi: 10.1002/aenm.202301327

    29. [29]

      Pihosh, Y.; Nandal, V.; Nandal, V.; Shoji, R.; Bekarevich, R.; Higashi, T.; Nicolosi, V.; Matsuzaki, H.; Seki, K.; Domen, K. ACS Energy Lett. 2023, 8, 2106. doi: 10.1021/acsenergylett.3c00539  doi: 10.1021/acsenergylett.3c00539

    30. [30]

      Dong, B.; Cui, J.; Gao, Y.; Qi, Y.; Zhang, F.; Li, C. Adv. Mater. 2019, 31, 1808185. doi: 10.1002/adma.201808185  doi: 10.1002/adma.201808185

    31. [31]

      Wang, L.; Zhang, B.; Rui, Q. ACS Catal. 2018, 8, 10564. doi: 10.1021/acscatal.8b03111  doi: 10.1021/acscatal.8b03111

    32. [32]

      Rudd, P. N.; Tereniak, S. J.; Lopez, R. ACS Appl. Mater. Interfaces 2023, 15, 7969. doi: 10.1021/acsami.2c19275  doi: 10.1021/acsami.2c19275

    33. [33]

      Matsui, Y.; Yamada, T.; Suzuki, S.; Yoshii, T.; Nishihara, H.; Teshima, K. ACS Appl. Energy Mater. 2021, 4, 2690. doi: 10.1021/acsaem.0c03231  doi: 10.1021/acsaem.0c03231

    34. [34]

      Stanley, P. M.; Haimerl, J.; Shustova, N. B.; Fischer, R. A.; Warnan, J. Nat. Chem. 2022, 14, 1342. doi: 10.1038/s41557-022-01093-x  doi: 10.1038/s41557-022-01093-x

    35. [35]

      Sepehrmansourie, H.; Alamgholiloo, H.; Pesyan, N. N.; Zolfigol, M. A. Appl. Catal. B 2023, 321, 122082. doi: 10.1016/j.apcatb.2022.122082  doi: 10.1016/j.apcatb.2022.122082

    36. [36]

      Zhao, Y.; Qin, X.; Zhao, X.; Wang, X.; Tan, H.; Sun, H.; Yan, G.; Li, H.; Ho, W.; Lee, S.-C. Chin. J. Catal. 2022, 43, 771. doi: 10.1016/S1872-2067(21)63843-3  doi: 10.1016/S1872-2067(21)63843-3

    37. [37]

      Wei, Z.; Yan, J.; Guo, W.; Shangguan, W. Chin. J. Catal. 2023, 48, 279. doi: 10.1016/S1872-2067(23)64414-6  doi: 10.1016/S1872-2067(23)64414-6

    38. [38]

      Xiao, W.; Yu, H.; Xu, C.; Pu, Z.; Cheng, X.; Yu, F.; Liu, C.; Zhang, Q.; Zou, Z. J Mater Sci Technol 2023, 180, 193. doi: 10.1016/j.jmst.2023.08.021  doi: 10.1016/j.jmst.2023.08.021

    39. [39]

      Liu, C.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 139, 167. doi: 10.1016/j.jmst.2022.08.030  doi: 10.1016/j.jmst.2022.08.030

    40. [40]

      Liu, C.; Xiao, W.; Liu, X.; Wang, Q.; Hu, J.; Zhang, S.; Xu, J.; Zhang, Q.; Zou, Z. J. Mater. Sci. Technol. 2023, 161, 123. doi: 10.1016/j.jmst.2023.04.007  doi: 10.1016/j.jmst.2023.04.007

    41. [41]

      Wang, Z.; Sun, Z.; Yin, H.; Wei, H.; Peng, Z.; Pang, Y. X.; Jia, G.; Zhao, H.; Pang, C. H.; Yin, Z. eScience 2023, 3, 100136. doi: 10.1016/j.esci.2023.100136  doi: 10.1016/j.esci.2023.100136

    42. [42]

      Sun, X.; Li, L.; Jin, S.; Shao, W.; Wang, H.; Zhang, X.; Xie, Y. eScience 2023, 3, 100095. doi: 10.1016/j.esci.2023.100095  doi: 10.1016/j.esci.2023.100095

    43. [43]

      Huang, W.; Bo, T.; Zuo, S.; Wang, Y.; Chen, J.; Ould-Chikh, S.; Li, Y.; Zhou, W.; Zhang, J.; Zhang, H. SusMat 2022, 2, 466. doi: 10.1002/sus2.76  doi: 10.1002/sus2.76

    44. [44]

      Zhao, N.; Peng, J.; Wang, J.; Zhai, M. Acta Phys.-Chim. Sin. 2022, 38, 2004046. doi: 10.3866/PKU.WHXB202004046  doi: 10.3866/PKU.WHXB202004046

    45. [45]

      Sun, K.; Zhao, Y.; Yin, J.; Jin, J.; Liu, H.; Xi, P. Acta Phys.-Chim. Sin. 2022, 38, 2107005. doi: 10.3866/PKU.WHXB202107005  doi: 10.3866/PKU.WHXB202107005

    46. [46]

      Xing, Y.; Liu, S. Chin. J. Struc. Chem. 2022, 41, 2209056. doi: 10.14102/j.cnki.0254-5861.2022-0188  doi: 10.14102/j.cnki.0254-5861.2022-0188

    47. [47]

      Fu, W.; Fan, J.; Xiang, Q. Chin. J. Struct. Chem. 2022, 41, 2206039. doi: 10.14102/j.cnki.0254-5861.2022-0090  doi: 10.14102/j.cnki.0254-5861.2022-0090

    48. [48]

      Zhong, W.; Xu, J.; Wang, P.; Zhu, B.; Fan, J.; Yu, H. Chin. J. Catal. 2022, 43, 1074. doi: 10.1016/S1872-2067(21)63969-4  doi: 10.1016/S1872-2067(21)63969-4

    49. [49]

      Li, X.; Liu, T.; Zhang, Y.; Cai, J.; He, M.; Li, M.; Chen, Z.; Zhang, L. Adv. Fiber Mater. 2022, 4, 1620. doi: 10.1007/s42765-022-00189-w  doi: 10.1007/s42765-022-00189-w

    50. [50]

      Ma, H.; Zhao, F.; Li, M.; Wang, P.; Fu, Y.; Wang, G.; Liu, X. Adv. Powder Mater. 2023, 2, 100117. doi: 10.1016/j.apmate.2023.100117  doi: 10.1016/j.apmate.2023.100117

    51. [51]

      Muelas-Ramos, V.; Sampaio, M. J.; Silva, C. G.; Bedia, J.; Rodriguez, J. J.; Faria, J. L.; Belver, C. J. Hazard. Mater. 2021, 416, 126199. doi: 10.1016/j.jhazmat.2021.126199  doi: 10.1016/j.jhazmat.2021.126199

    52. [52]

      Zhu, H.; Zhen, C.; Chen, X.; Feng, S.; Li, B.; Du, Y.; Liu, G.; Cheng, H.-M. Sci. Bull. 2022, 67, 2420. doi: 10.1016/j.scib.2022.11.018  doi: 10.1016/j.scib.2022.11.018

    53. [53]

      Wang, Q.; Pornrungroj, C.; Linley, S.; Reisner, E. Nat. Energy 2022, 7, 13. doi: 10.1038/s41560-021-00919-1  doi: 10.1038/s41560-021-00919-1

    54. [54]

      Andrei, V.; Ucoski, G. M.; Pornrungroj, C.; Uswachoke, C.; Wang, Q.; Achilleos, D. S.; Kasap, H.; Sokol, K. P.; Jagt, R. A.; Lu, H.; et al. Nature 2022, 608, 518. doi: 10.1038/s41586-022-04978-6  doi: 10.1038/s41586-022-04978-6

    55. [55]

      Yan, T.; Zhang, X.; Liu, H.; Jin, Z. Chin. J. Struct. Chem. 2022, 41, 2201047. doi: 10.14102/j.cnki.0254-5861.2021-0057  doi: 10.14102/j.cnki.0254-5861.2021-0057

    56. [56]

      Lin, G.; Zhang, C.; Xu, X. J. Mater. Sci. Technol. 2024, 154, 241. doi: 10.1016/j.jmst.2022.12.069  doi: 10.1016/j.jmst.2022.12.069

    57. [57]

      Das, P. K.; Sivasankaran, R. P.; Arunachalam, M.; Subhash, K. R.; Ha, J.-S.; Ahn, K.-S.; HyungKang, S. Appl. Surf. Sci. 2021, 565, 150456. doi: 10.1016/j.apsusc.2021.150456  doi: 10.1016/j.apsusc.2021.150456

    58. [58]

      Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668  doi: 10.1002/adma.202107668

    59. [59]

      Wang, C.; You, C.; Rong, K.; Shen, C.; Fang, Y.; Li, S. Acta Phys.-Chim. Sin. 2024, 40, 2307045. doi: 10.3866/PKU.WHXB202307045  doi: 10.3866/PKU.WHXB202307045

    60. [60]

      Dong, K.; Shen, C.; Yan, R.; Liu, Y.; Zhuang, C.; Li, S. Acta Phys.-Chim. Sin. 2024, 40, 2310013. doi: 10.3866/PKU.WHXB202310013  doi: 10.3866/PKU.WHXB202310013

    61. [61]

      Li, S.; Dong, K.; Cai, M.; Li, X.; Chen, X. eScience 2024, 4, 100208. doi: 10.1016/j.esci.2023.100208  doi: 10.1016/j.esci.2023.100208

    62. [62]

      Li, S.; You, C.; Rong, K.; Zhuang, C.; Chen, X.; Zhang, B. Adv. Powder Mater. 2024, 3, 100183. doi: 10.1016/j.apmate.2024.100183  doi: 10.1016/j.apmate.2024.100183

    63. [63]

      Liu, Z.; Fan, S.; Li, X.; Niu, Z.; Wang, J.; Bai, C.; Duan, J.; O. Tadéb, M.; Liu, S. Appl. Catal., B 2023, 327, 122416. doi: 10.1016/j.apcatb.2023.122416  doi: 10.1016/j.apcatb.2023.122416

    64. [64]

      He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi: 10.1016/S1872-2067(23)64420-1  doi: 10.1016/S1872-2067(23)64420-1

    65. [65]

      Cai, X.; Du, J.; Zhong, G.; Zhang, Y.; Mao, L.; Lou, Z. Acta Phys.-Chim. Sin. 2023, 39, 2302017. doi: 10.3866/PKU.WHXB202302017  doi: 10.3866/PKU.WHXB202302017

    66. [66]

      Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi: 10.1016/j.trechm.2022.08.008  doi: 10.1016/j.trechm.2022.08.008

    67. [67]

      Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600  doi: 10.1002/adma.202310600

    68. [68]

      Zhang, Z.; Wang, M.; Wang, F. Chem Catal. 2022, 2, 1394. doi: 10.1016/j.checat.2022.04.001  doi: 10.1016/j.checat.2022.04.001

    69. [69]

      He, J.; Hu, L.; Shao, C.; Jiang, S.; Sun, C.; Song, S. ACS Nano 2021, 15, 18006. doi: 10.1021/acsnano.1c06524  doi: 10.1021/acsnano.1c06524

    70. [70]

      Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317  doi: 10.1002/adma.202100317

    71. [71]

      Li, P.; Yan, X.; Gao, S.; Cao, R. Chem. Eng. J. 2021, 421, 129870. doi: 10.1016/j.cej.2021.129870  doi: 10.1016/j.cej.2021.129870

    72. [72]

      Zhou, P.; Zhang, Q.; Chao, Y.; Wang, L.; Li, Y.; Chen, H.; Gu, L.; Guo, S. Chem 2021, 7, 1033. doi: 10.1016/j.chempr.2021.01.007  doi: 10.1016/j.chempr.2021.01.007

    73. [73]

      Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi: 10.1016/j.jmst.2023.03.054  doi: 10.1016/j.jmst.2023.03.054

    74. [74]

      Lee, D. E.; Mameda, N.; Reddy, K. P.; Abraham, B. M.; Jo, W. K.; Tonda, S. J Mater. Sci. Technol. 2023, 161, 74. doi: 10.1016/j.jmst.2023.03.024  doi: 10.1016/j.jmst.2023.03.024

    75. [75]

      Li, S.; Cai, M.; Wang, C.; Liu, Y. Adv. Fiber Mater. 2023, 5, 994. doi: 10.1007/s42765-022-00253-5  doi: 10.1007/s42765-022-00253-5

    76. [76]

      Mandal, S.; Adhikari, S.; Choi, S.; Lee, Y.; Kim, D.-H. Chem. Eng. J. 2022, 444, 136609. doi: 10.1016/j.cej.2022.136609  doi: 10.1016/j.cej.2022.136609

    77. [77]

      González-González, R. B.; Sharma, A.; Parra-Saldívar, R.; Ramirez-Mendoza, R. A.; Bilal, M.; Iqbal, H. M. N. J. Hazard. Mater. 2022, 423, 127145. doi: 10.1016/j.jhazmat.2021.127145  doi: 10.1016/j.jhazmat.2021.127145

    78. [78]

      Akbar, K.; Moretti, E.; Vomiero, A. Adv. Optical Mater. 2021, 9, 2100532. doi: 10.1002/adom.202100532  doi: 10.1002/adom.202100532

    79. [79]

      Ðorđević, L.; Arcudi, F.; Cacioppo, M.; Prato, M. Nat. Nanotechnol. 2022, 17, 112. doi: 10.1038/s41565-021-01051-7  doi: 10.1038/s41565-021-01051-7

    80. [80]

      Raghavan, A.; Sarkar, S.; Nagappagari, L. R.; Bojja, S.; Muthukonda Venkatakrishnan, S.; Ghosh, S. Ind. Eng. Chem. Res. 2020, 59, 13060. doi: 10.1021/acs.iecr.0c01663  doi: 10.1021/acs.iecr.0c01663

    81. [81]

      Molaei, M. J. Sol. Energy 2020, 196, 549. doi: 10.1016/j.solener.2019.12.036  doi: 10.1016/j.solener.2019.12.036

    82. [82]

      Luo, H.; Guo, Q.; Szilágyi, P. Á.; Jorge, A. B.; Titirici, M.-M. Trends Chem. 2020, 2, 623. doi: 10.1016/j.trechm.2020.04.007  doi: 10.1016/j.trechm.2020.04.007

    83. [83]

      Casadevall, C.; Lage, A.; Mu, M.; Greer, H. F.; Antón-García, D.; Butt, J. N.; Jeuken, L. J. C.; Watson, G. W.; García-Melchor, M.; Reisner, E. Nanoscale 2023, 15, 15775. doi: 10.1039/d3nr03300g  doi: 10.1039/d3nr03300g

    84. [84]

      Arvnd, M.; Hemmati, S. Sens. Actuators B 2017, 238, 346. doi: 10.1016/j.snb.2016.07.066  doi: 10.1016/j.snb.2016.07.066

    85. [85]

      Zhang, J.; Wang, X.; Shen, K.; Lu, W.; Wang, J.; Chen, F. Adv. Fiber Mater. 2023, 5, 168. doi: 10.1007/s42765-022-00205-z  doi: 10.1007/s42765-022-00205-z

    86. [86]

      Wang, Z.; Li, J.; Qiao, Y.; Liu, X.; Zheng, Y.; Li, Z.; Shen, J.; Zhang, Y.; Zhu, S.; Jiang, H.; et al. Adv. Fiber Mater. 2023, 5, 484. doi: 10.1007/s42765-022-00234-8  doi: 10.1007/s42765-022-00234-8

    87. [87]

      Su, B.; Huang, H.; Ding, Z.; Roeffaers, M. B. J.; Wang, S.; Long, J. J. Mater. Sci. Technol. 2022, 124, 164. doi: 10.1016/j.jmst.2022.01.030  doi: 10.1016/j.jmst.2022.01.030

    88. [88]

      Fan, Z.; Guo, X.; Yang, M.; Jin, Z. Chin. J. Catal. 2022, 43, 2708. doi: 10.1016/S1872-2067(21)64053-6  doi: 10.1016/S1872-2067(21)64053-6

    89. [89]

      Liang, Z.; Xue, Y.; Wang, X.; Zhang, X.; Tian, J.; Cui, H. Nano Mater. Sci. 2023, 5, 202. doi: 10.1016/j.nanoms.2022.03.001  doi: 10.1016/j.nanoms.2022.03.001

    90. [90]

      Zou, Z.; Zhang, H.; Lan, J.; Luo, J.; Xie, Y.; Li, Y.; Lü, J.; Cao, R. Nano Mater. Sci. 2023, doi: 10.1016/j.nanoms.2022.11.001  doi: 10.1016/j.nanoms.2022.11.001

  • 加载中
    1. [1]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    3. [3]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    4. [4]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    5. [5]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    6. [6]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    7. [7]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    8. [8]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    10. [10]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    12. [12]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    13. [13]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    14. [14]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    15. [15]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    16. [16]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    17. [17]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    18. [18]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    20. [20]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

Metrics
  • PDF Downloads(23)
  • Abstract views(1416)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return