
Citation: Ping Ye, Lingshuang Qin, Mengyao He, Fangfang Wu, Zengye Chen, Mingxing Liang, Libo Deng. Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons[J]. Acta Physico-Chimica Sinica, 2025, 41(3): 231103. doi: 10.3866/PKU.WHXB202311032

荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子
English
Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons

-
-
[1]
Elimelech, M.; Phillip, W. A. Science 2011, 333 (6043), 712. doi: 10.1126/science.1200488
-
[2]
Wei, B.; Yang, L. Microchem. J. 2010, 94 (2), 99. doi: 10.1016/j.microc.2009.09.014
-
[3]
Xu, Y.; Xiang, S.; Zhang, X.; Zhou, H.; Zhang, H. J. Hazard. Mater. 2022, 439, 129575. doi: 10.1016/j.jhazmat.2022.129575
-
[4]
Qasem, N. A. A.; Mohammed, R. H.; Lawal, D. U. NPJ Clean Water 2021, 4 (1), 36. doi: 10.1038/s41545-021-00127-0
-
[5]
李保庆, 袁文辉, 李莉. 物理化学学报, 2016, 32 (4), 997. doi: 10.3866/PKU.WHXB201602182Li, B.; Yuan, W.; Li, L. Acta Phys. -Chim. Sin. 2016, 32 (4), 997. doi: 10.3866/PKU.WHXB201602182
-
[6]
Liang, M.; Liu, N.; Zhang, X.; Xiao, Y.; Yang, J.; Yu, F.; Ma, J. Adv. Funct. Mater. 2022, 32 (49), 2209741. doi: 10.1002/adfm.202209741
-
[7]
王雷, 于飞, 马杰. 物理化学学报, 2017, 33 (7), 1338. doi: 10.3866/PKU.WHXB201704113Wang, L.; Yu, F.; Ma, J. Acta Phys. -Chim. Sin. 2017, 33 (7), 1338. doi: 10.3866/PKU.WHXB201704113
-
[8]
Zhao, C.; Wang, X.; Zhang, S.; Sun, N.; Zhou, H.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. Environ. Sci. : Water Res. Technol. 2020, 6 (2), 331. doi: 10.1039/C9EW00472F
-
[9]
Chen, Y.; Zhang, Z.; Deng, W.; Wang, Z.; Gao, M.; Gao, C.; Chen, W.; Dai, Q.; Ueyama, T. Desalination 2022, 521, 115384. doi: 10.1016/j.desal.2021.115384
-
[10]
Wang, S.; Chen, D.; Zhang, Z.; Hu, Y.; Quan, H. Sep. Purif. Technol. 2022, 290, 120912. doi: 10.1016/j.seppur.2022.120912
-
[11]
Song, Z.; Li, L.; Chen, Y.; Duan, X.; Ren, N. J. Mater. Sci. Technol. 2023, 148, 10. doi: 10.1016/j.jmst.2022.11.016
-
[12]
Fleischmann, S.; Zhang, Y.; Wang, X.; Cummings, P. T.; Wu, J.; Simon, P.; Gogotsi, Y.; Presser, V.; Augustyn, V. Nat. Energy 2022, 7 (3), 222. doi: 10.1038/s41560-022-00993-z
-
[13]
文越华, 曹高萍, 程杰, 杨裕生. 物理化学学报, 2005, 21 (5), 494. doi: 10.3866/PKU.WHXB20050507Wen, Y.; Cao, G.; Cheng, J.; Yang, Y. Acta Phys. -Chim. Sin. 2005, 21 (5), 494. doi: 10.3866/PKU.WHXB20050507
-
[14]
李道琰, 张基琛, 王志勇, 金先波. 物理化学学报, 2017, 33 (11), 2245. doi: 10.3866/PKU.WHXB201705241Li, D.; Zhang, J.; Wang, Z.; Jin, X. Acta Phys. -Chim. Sin. 2017, 33 (11), 2245. doi: 10.3866/PKU.WHXB201705241
-
[15]
郭楠楠, 张苏, 王鲁香, 贾殿赠. 物理化学学报, 2020, 36 (2), 21. doi: 10.3866/PKU.WHXB201903055Guo, N.; Zhang, S.; Wang, L.; Jia, D. Acta Phys. -Chim. Sin. 2020, 36 (2), 21. doi: 10.3866/PKU.WHXB201903055
-
[16]
Chandrasekaran, S.; Hu, R.; Yao, L.; Sui, L.; Liu, Y.; Abdelkader, A.; Li, Y.; Ren, X.; Deng, L. Nano-Micro Lett. 2023, 15 (1), 48. doi: 10.1007/s40820-023-01022-8
-
[17]
李君涛, 吴娇红, 张涛, 黄令. 物理化学学报, 2017, 33 (5), 968. doi: 10.3866/PKU.WHXB201702093Li, J.; Wu, J.; Zhang, T.; Huang, L. Acta Phys. -Chim. Sin. 2017, 33 (5), 968. doi: 10.3866/PKU.WHXB201702093
-
[18]
Chu, M.; Tian, W.; Zhao, J.; Zhang, D.; Zou, M.; Lu, Z.; Jiang, J. Desalination 2023, 556, 116588. doi: 10.1016/j.desal.2023.116588
-
[19]
Srimuk, P.; Su, X.; Yoon, J.; Aurbach, D.; Presser, V. Nat. Rev. Mater. 2020, 5 (7), 517. doi: 10.1038/s41578-020-0193-1
-
[20]
Wu, T.; Wang, G.; Zhan, F.; Dong, Q.; Ren, Q.; Wang, J.; Qiu, J. Water Res. 2016, 93, 30. doi: 10.1016/j.watres.2016.02.004
-
[21]
Nguyen, T. K. A.; Huynh, T. V.; Doong, R. A. Chem. Eng. J. 2023, 475, 146439. doi: 10.1016/j.cej.2023.146439
-
[22]
Deng, H.; Wang, Z.; Kim, M.; Yamauchi, Y.; Eichhorn, S. J.; Titirici, M. M.; Deng, L. Nano Energy 2023, 117, 108914. doi: 10.1016/j.nanoen.2023.108914
-
[23]
Cohen, I.; Avraham, E.; Bouhadana, Y.; Soffer, A.; Aurbach, D. Electrochim. Acta 2015, 153, 106. doi: 10.1016/j.electacta.2014.12.007
-
[24]
Oghbaei, M.; Mirzaee, O. J. Alloys Compd. 2010, 494 (1), 175. doi: 10.1016/j.jallcom.2010.01.068
-
[25]
Wei, W.; Gu, X.; Wang, R.; Feng, X.; Chen, H. Nano Lett. 2022, 22 (18), 7572. doi: 10.1021/acs.nanolett.2c02583
-
[26]
He, R.; Neupane, M.; Zia, A.; Huang, X.; Bowers, C.; Wang, M.; Lu, J.; Yang, Y.; Dong, P. Adv. Funct. Mater. 2022, 32 (49), 2208040. doi: 10.1002/adfm.202208040
-
[27]
Mo, F.; Zhang, H.; Wang, Y.; Chen, C.; Wu, X. J. Energy Storage 2022, 49, 104122. doi: 10.1016/j.est.2022.104122
-
[28]
Chen, J.; Mao, Z.; Zhang, L.; Wang, D.; Xu, R.; Bie, L.; Fahlman, B. D. ACS Nano 2017, 11 (12), 12650. doi: 10.1021/acsnano.7b07116
-
[29]
Song, Z.; Miao, L.; Lv, Y.; Gan, L.; Liu, M. Angew. Chem. Int. Ed. 2023, 62 (38), e202309446. doi: 10.1002/anie.202309446
-
[30]
Zhang, Y.; Song, Z.; Miao, L.; Lv, Y.; Gan, L.; Liu, M. Angew. Chem. Int. Ed. 2024, 63 (3), e202316835. doi: 10.1002/anie.202316835
-
[31]
Zhang, Y.; Song, Z.; Miao, L.; Lv, Y.; Gan, L.; Liu, M. ACS Appl. Mater. Interfaces 2023, 15 (29), 35380. doi: 10.1021/acsami.3c06849
-
[32]
Ma, X.; Wu, Q.; Wang, W.; Lu, S.; Xiang, Y.; Aurbach, D. J. Mater. Chem. A 2020, 8 (32), 16312. doi: 10.1039/D0TA00682C
-
[33]
Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; et al. Science 2011, 332 (6037), 1537. doi: 10.1126/science.1200770
-
[34]
Ye, G.; Liu, S.; Huang, K.; Wang, S.; Zhao, K.; Zhu, W.; Su, Y.; Wang, J.; He, Z. Adv. Funct. Mater. 2022, 32 (18), 2111396. doi: 10.1002/adfm.202111396
-
[35]
Wu, S.; Chen, G.; Kim, N. Y.; Ni, K.; Zeng, W.; Zhao, Y.; Tao, Z.; Ji, H.; Lee, Z.; Zhu, Y. Small 2016, 12 (17), 2376. doi: 10.1002/smll.201503855
-
[36]
Zhang, W.; Sun, M.; Yin, J.; Lu, K.; Schwingenschlogl, U.; Qiu, X.; Alshareef, H. N. Adv. Energy Mater. 2021, 11 (41), 9. doi: 10.1002/aenm.202101928
-
[37]
Zhang, H.; Wang, C.; Zhang, W.; Zhang, M.; Qi, J.; Qian, J.; Sun, X.; Yuliarto, B.; Na, J.; Park, T.; et al. J. Mater. Chem. A 2021, 9 (21), 12807. doi: 10.1039/d0ta10797b
-
[38]
Temesgen, T.; Bekele, E. T.; Gonfa, B. A.; Tufa, L. T.; Sabir, F. K.; Tadesse, S.; Dessie, Y. J. Energy Storage 2023, 73, 109293. doi: 10.1016/j.est.2023.109293
-
[39]
Deng, H.; Wei, W.; Yao, L.; Zheng, Z.; Li, B.; Abdelkader, A.; Deng, L. Adv. Sci. 2022, 9 (30), 2203189. doi: 10.1002/advs.202203189
-
[40]
Cao, Z.; Hu, S.; Yang, Q.; Yu, J.; Pan, Y.; Zuo, J.; Song, H.; Ye, Z.; Zhang, S. Chem. Eng. J. 2022, 450, 138126. doi: 10.1016/j.cej.2022.138126
-
[41]
Xu, X.; Wang, M.; Liu, Y.; Lu, T.; Pan, L. J. Mater. Chem. A 2016, 4 (15), 5467. doi: 10.1039/C6TA00618C
-
[42]
Cheng, Y.; Liu, J. Mater. Res. Lett. 2013, 1 (4), 175. doi: 10.1080/21663831.2013.808712
-
[43]
Huang, Z.; Lu, L.; Cai, Z.; Ren, Z. J. Hazard. Mater. 2016, 302, 323. doi: 10.1016/j.jhazmat.2015.09.064
-
[44]
Wu, J.; Wang, T.; Zhang, Y.; Pan, W. Bioresour. Technol. 2019, 291, 121859. doi: 10.1016/j.biortech.2019.121859
-
[45]
Feizi, M.; Jalali, M.; Antoniadis, V.; Shaheen, S. M.; Ok, Y. S.; Rinklebe, J. J. Hazard. Mater. 2019, 379, 10. doi: 10.1016/j.jhazmat.2019.04.050
-
[1]
-

计量
- PDF下载量: 0
- 文章访问数: 132
- HTML全文浏览量: 0