Citation: Qi Li, Pingan Li, Zetong Liu, Jiahui Zhang, Hao Zhang, Weilai Yu, Xianluo Hu. Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications[J]. Acta Physico-Chimica Sinica, 2024, 40(10): 231103. doi: 10.3866/PKU.WHXB202311030
同轴静电纺丝构筑微/纳米结构隔膜与电极材料用于锂离子电池:从原理到应用
English
Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications
-
-
[1]
(1) Zhu, J. H.; Wu, Y. P.; Huang, X. K.; Huang, L.; Cao, M. Y.; Song, G. Q.; Guo, X. R.; Sui, X. Y.; Ren, R.; Chen, J. H. Nano Energy 2019, 62, 883. doi: 10.1016/j.nanoen.2019.06.023(1) Zhu, J. H.; Wu, Y. P.; Huang, X. K.; Huang, L.; Cao, M. Y.; Song, G. Q.; Guo, X. R.; Sui, X. Y.; Ren, R.; Chen, J. H. Nano Energy 2019, 62, 883. doi: 10.1016/j.nanoen.2019.06.023
-
[2]
(2) Lu, Z. H.; Sui, F.; Miao, Y.-E.; Liu, G. H.; Li, C.; Dong, W.; Cui, J.; Liu, T. X.; Wu, J. X.; Yang, C. L. J. Energy Chem. 2021, 58, 170. doi: 10.1016/j.jechem.2020.09.043(2) Lu, Z. H.; Sui, F.; Miao, Y.-E.; Liu, G. H.; Li, C.; Dong, W.; Cui, J.; Liu, T. X.; Wu, J. X.; Yang, C. L. J. Energy Chem. 2021, 58, 170. doi: 10.1016/j.jechem.2020.09.043
-
[3]
(3) Chombo, P. V.; Laoonual, Y. J. Power Sources 2020, 478, 228649. doi: 10.1016/j.jpowsour.2020.228649(3) Chombo, P. V.; Laoonual, Y. J. Power Sources 2020, 478, 228649. doi: 10.1016/j.jpowsour.2020.228649
-
[4]
(4) Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Angew. Chem. Int. Ed. 2008, 47 (16), 2930. doi: 10.1002/anie.200702505(4) Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Angew. Chem. Int. Ed. 2008, 47 (16), 2930. doi: 10.1002/anie.200702505
-
[5]
(5) Lu, H.; Hou, R.; Chu, S.; Zhou, H.; Guo, S. Acta Phys. -Chim. Sin. 2023, 39 (7), 2211057. [鲁航语, 侯瑞林, 褚世勇, 周豪慎, 郭少华. 物理化学学报, 2023, 39 (7), 2211057.] doi: 10.3866/PKU.WHXB202211057
-
[6]
(6) Mo, Y.; Xiao, K.; Wu, J.; Liu, H.; Hu, A.; Gao, P.; Liu, J. Acta Phys. -Chim. Sin. 2021, 38 (6), 2107030. [莫英, 肖逵逵, 吴剑芳, 刘辉, 胡爱平, 高鹏, 刘继磊. 物理化学学报, 2021, 38 (6), 2107030.] doi: 10.3866/PKU.WHXB202107030
-
[7]
(7) Li, J.; Kong, Z.; Liu, X.; Zheng, B.; Fan, Q. H.; Garratt, E.; Schuelke, T.; Wang, K.; Xu, H.; Jin, H. InfoMat 2021, 3 (12), 1333. doi: 10.1002/inf2.12189(7) Li, J.; Kong, Z.; Liu, X.; Zheng, B.; Fan, Q. H.; Garratt, E.; Schuelke, T.; Wang, K.; Xu, H.; Jin, H. InfoMat 2021, 3 (12), 1333. doi: 10.1002/inf2.12189
-
[8]
(8) Zhang, R.; Yang, S.; Li, H.; Zhai, T.; Li, H. InfoMat 2022, 4 (6), e12305. doi: 10.1002/inf2.12305(8) Zhang, R.; Yang, S.; Li, H.; Zhai, T.; Li, H. InfoMat 2022, 4 (6), e12305. doi: 10.1002/inf2.12305
-
[9]
(9) Lv, H.; Wang, X.; Yang, Y.; Liu, T.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 39 (3), 2210014. [吕浩亮, 王雪杰, 杨宇, 刘涛, 张留洋. 物理化学学报, 2022, 39 (3), 2210014.] doi: 10.3866/PKU.WHXB202210014
-
[10]
(10) Liu, T.; Yang, Y.; Cao, S.; Xiang, R.; Zhang, L.; Yu, J. Adv. Mater. 2023, 35 (13), 2207752. doi: 10.1002/adma.202207752(10) Liu, T.; Yang, Y.; Cao, S.; Xiang, R.; Zhang, L.; Yu, J. Adv. Mater. 2023, 35 (13), 2207752. doi: 10.1002/adma.202207752
-
[11]
(11) Xie, W.; Li, S.; Wang, S.; Xue, S.; Liu, Z.; Jiang, X.; He, D. ACS Appl. Mater. Interfaces 2014, 6 (22), 20334. doi: 10.1021/am505829v(11) Xie, W.; Li, S.; Wang, S.; Xue, S.; Liu, Z.; Jiang, X.; He, D. ACS Appl. Mater. Interfaces 2014, 6 (22), 20334. doi: 10.1021/am505829v
-
[12]
(12) Park, S.-H.; Lee, W.-J. J. Power Sources 2015, 281, 301. doi: 10.1016/j.jpowsour.2015.01.156(12) Park, S.-H.; Lee, W.-J. J. Power Sources 2015, 281, 301. doi: 10.1016/j.jpowsour.2015.01.156
-
[13]
(13) Qu, E. L.; Chen, T.; Xiao, Q. Z.; Lei, G. T.; Li, Z. H. J. Electrochem. Soc. 2018, 165 (3), A487. doi: 10.1149/2.0441803jes(13) Qu, E. L.; Chen, T.; Xiao, Q. Z.; Lei, G. T.; Li, Z. H. J. Electrochem. Soc. 2018, 165 (3), A487. doi: 10.1149/2.0441803jes
-
[14]
(14) Zhang, Y.; Luo, Z. P.; Xiao, Q. Z.; Sun, T. L.; Lei, G. T.; Li, Z. H.; Li, X. J. J. Power Sources 2015, 297, 442. doi: 10.1016/j.jpowsour.2015.08.012(14) Zhang, Y.; Luo, Z. P.; Xiao, Q. Z.; Sun, T. L.; Lei, G. T.; Li, Z. H.; Li, X. J. J. Power Sources 2015, 297, 442. doi: 10.1016/j.jpowsour.2015.08.012
-
[15]
(15) Gao, M. Z.; Liu, B.; Zhang, X. Y.; Zhang, Y. M.; Li, X. B.; Han, G. T. J. Alloy. Compd. 2022, 894, 162550. doi: 10.1016/j.jallcom.2021.162550(15) Gao, M. Z.; Liu, B.; Zhang, X. Y.; Zhang, Y. M.; Li, X. B.; Han, G. T. J. Alloy. Compd. 2022, 894, 162550. doi: 10.1016/j.jallcom.2021.162550
-
[16]
(16) Wang, M.-S.; Wang, Z.-Q.; Chen, Z.; Yang, Z.-L.; Tang, Z.-L.; Luo, H.-Y.; Huang, Y.; Li, X.; Xu, W. Chem. Eng. J. 2018, 334, 162. doi: 10.1016/j.cej.2017.07.106(16) Wang, M.-S.; Wang, Z.-Q.; Chen, Z.; Yang, Z.-L.; Tang, Z.-L.; Luo, H.-Y.; Huang, Y.; Li, X.; Xu, W. Chem. Eng. J. 2018, 334, 162. doi: 10.1016/j.cej.2017.07.106
-
[17]
(17) Yarin, A. L.; Zussman, E.; Wendorff, J. H.; Greiner, A. J. Mater. Chem. 2007, 17 (25), 2585. doi: 10.1039/b618508h(17) Yarin, A. L.; Zussman, E.; Wendorff, J. H.; Greiner, A. J. Mater. Chem. 2007, 17 (25), 2585. doi: 10.1039/b618508h
-
[18]
(18) Moghe, A. K.; Gupta, B. S. Polym. Rev. 2008, 48 (2), 353. doi: 10.1080/15583720802022257(18) Moghe, A. K.; Gupta, B. S. Polym. Rev. 2008, 48 (2), 353. doi: 10.1080/15583720802022257
-
[19]
(19) Qu, H. L.; Wei, S. Y.; Guo, Z. H. J. Mater. Chem. A 2013, 1 (38), 11513. doi: 10.1039/c3ta12390a(19) Qu, H. L.; Wei, S. Y.; Guo, Z. H. J. Mater. Chem. A 2013, 1 (38), 11513. doi: 10.1039/c3ta12390a
-
[20]
(20) Yoon, J. Y.; Yang, H. S.; Lee, B. S.; Yu, W. R. Adv. Mater. 2018, 30 (42), e1704765. doi: 10.1002/adma.201704765(20) Yoon, J. Y.; Yang, H. S.; Lee, B. S.; Yu, W. R. Adv. Mater. 2018, 30 (42), e1704765. doi: 10.1002/adma.201704765
-
[21]
(21) Han, D.; Steckl, A. J. ChemPlusChem 2019, 84 (10), 1453. doi: 10.1002/cplu.201900281(21) Han, D.; Steckl, A. J. ChemPlusChem 2019, 84 (10), 1453. doi: 10.1002/cplu.201900281
-
[22]
(22) Wang, J.; Wang, Z.; Ni, J.; Li, L. Electrochem. Energy Rev. 2021, 5 (2), 211. doi: 10.1007/s41918-021-00103-9(22) Wang, J.; Wang, Z.; Ni, J.; Li, L. Electrochem. Energy Rev. 2021, 5 (2), 211. doi: 10.1007/s41918-021-00103-9
-
[23]
(23) Wang, J.; Wang, Z.; Ni, J.; Li, L. Energy Storage Mater. 2022, 45, 704. doi: 10.1016/j.ensm.2021.12.022(23) Wang, J.; Wang, Z.; Ni, J.; Li, L. Energy Storage Mater. 2022, 45, 704. doi: 10.1016/j.ensm.2021.12.022
-
[24]
(24) Huang, Z. M.; Zhang, Y. Z.; Kotakic, M.; Ramakrishna, S. Compos. Sci. Technol. 2003, 63 (15), 2223. doi: 10.1016/s0266-3538(03)00178-7(24) Huang, Z. M.; Zhang, Y. Z.; Kotakic, M.; Ramakrishna, S. Compos. Sci. Technol. 2003, 63 (15), 2223. doi: 10.1016/s0266-3538(03)00178-7
-
[25]
(25) Tucker, N.; Stanger, J. J.; Staiger, M. P.; Razzaq, H.; Hofman, K. J. Eng. Fibers Fabr. 2012, 7, 63. doi: 10.1177/155892501200702S10(25) Tucker, N.; Stanger, J. J.; Staiger, M. P.; Razzaq, H.; Hofman, K. J. Eng. Fibers Fabr. 2012, 7, 63. doi: 10.1177/155892501200702S10
-
[26]
(26) Song, W.; Tang, Y.; Qian, C.; Kim, B. J.; Liao, Y.; Yu, D.-G. Innovation 2023, 4 (2), 100381. doi: 10.1016/j.xinn.2023.100381(26) Song, W.; Tang, Y.; Qian, C.; Kim, B. J.; Liao, Y.; Yu, D.-G. Innovation 2023, 4 (2), 100381. doi: 10.1016/j.xinn.2023.100381
-
[27]
(27) Wang, C.; Liu, Y.; Jia, Z.; Zhao, W.; Wu, G. Nano-Micro Lett. 2022, 15 (1), 13. doi: 10.1007/s40820-022-00986-3(27) Wang, C.; Liu, Y.; Jia, Z.; Zhao, W.; Wu, G. Nano-Micro Lett. 2022, 15 (1), 13. doi: 10.1007/s40820-022-00986-3
-
[28]
(28) Bhardwaj, N.; Kundu, S. C. Biotechnol. Adv. 2010, 28 (3), 325. doi: 10.1016/j.biotechadv.2010.01.004(28) Bhardwaj, N.; Kundu, S. C. Biotechnol. Adv. 2010, 28 (3), 325. doi: 10.1016/j.biotechadv.2010.01.004
-
[29]
(29) Loscertales, I. G.; Barrero, A.; Guerrero, I.; Cortijo, R.; Marquez, M.; Gañán-Calvo, A. M. Science 2002, 295 (5560), 1695. doi: 10.1126/science.1067595(29) Loscertales, I. G.; Barrero, A.; Guerrero, I.; Cortijo, R.; Marquez, M.; Gañán-Calvo, A. M. Science 2002, 295 (5560), 1695. doi: 10.1126/science.1067595
-
[30]
(30) Sun, Z. C.; Zussman, E.; Yarin, A. L.; Wendorff, J. H.; Greiner, A. Adv. Mater. 2003, 15 (22), 1929. doi: 10.1002/adma.200305136(30) Sun, Z. C.; Zussman, E.; Yarin, A. L.; Wendorff, J. H.; Greiner, A. Adv. Mater. 2003, 15 (22), 1929. doi: 10.1002/adma.200305136
-
[31]
(31) Gu, Y. X.; Jian, F. F. J. Phys. Chem. C 2008, 112 (51), 20176. doi: 10.1021/jp808468x(31) Gu, Y. X.; Jian, F. F. J. Phys. Chem. C 2008, 112 (51), 20176. doi: 10.1021/jp808468x
-
[32]
(32) Li, D.; Babel, A.; Jenekhe, S. A.; Xia, Y. Adv. Mater. 2004, 16 (22), 2062. doi: 10.1002/adma.200400606(32) Li, D.; Babel, A.; Jenekhe, S. A.; Xia, Y. Adv. Mater. 2004, 16 (22), 2062. doi: 10.1002/adma.200400606
-
[33]
(33) Xia, D. L. Y. Nano Lett. 2004, 4 (5), 933. doi: 10.1021/nl049590f(33) Xia, D. L. Y. Nano Lett. 2004, 4 (5), 933. doi: 10.1021/nl049590f
-
[34]
(34) Garcia-Mateos, F. J.; Ruiz-Rosas, R.; Rosas, J. M.; Rodriguez-Mirasol, J.; Cordero, T. Front. Mater. 2019, 6, 114. doi: 10.3389/fmats.2019.00114(34) Garcia-Mateos, F. J.; Ruiz-Rosas, R.; Rosas, J. M.; Rodriguez-Mirasol, J.; Cordero, T. Front. Mater. 2019, 6, 114. doi: 10.3389/fmats.2019.00114
-
[35]
(35) Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wnek, G. E. Polymer 2005, 46 (10), 3372. doi: 10.1016/j.polymer.2005.03.011(35) Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wnek, G. E. Polymer 2005, 46 (10), 3372. doi: 10.1016/j.polymer.2005.03.011
-
[36]
(36) Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L. Polymer 2005, 46 (13), 4799. doi: 10.1016/j.polymer.2005.04.021(36) Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L. Polymer 2005, 46 (13), 4799. doi: 10.1016/j.polymer.2005.04.021
-
[37]
(37) Lee, G. H.; Song, J.-C.; Yoon, K.-B. Macromol. Res. 2010, 18 (6), 571. doi: 10.1007/s13233-010-0607-9(37) Lee, G. H.; Song, J.-C.; Yoon, K.-B. Macromol. Res. 2010, 18 (6), 571. doi: 10.1007/s13233-010-0607-9
-
[38]
(38) Yang, Q. B.; Li, Z. Y.; Hong, Y. L.; Zhao, Y. Y.; Qiu, S. L.; Wang, C.; Wei, Y. J. Polym. Sci. Part B: Polym. Phys. 2004, 42 (20), 3721. doi: 10.1002/polb.20222(38) Yang, Q. B.; Li, Z. Y.; Hong, Y. L.; Zhao, Y. Y.; Qiu, S. L.; Wang, C.; Wei, Y. J. Polym. Sci. Part B: Polym. Phys. 2004, 42 (20), 3721. doi: 10.1002/polb.20222
-
[39]
(39) Zhang, Y. Z.; Huang, Z. M.; Xu, X. J.; Lim, C. T.; Ramakrishna, S. Chem. Mater. 2004, 16 (18), 3406. doi: 10.1021/cm049580f(39) Zhang, Y. Z.; Huang, Z. M.; Xu, X. J.; Lim, C. T.; Ramakrishna, S. Chem. Mater. 2004, 16 (18), 3406. doi: 10.1021/cm049580f
-
[40]
(40) Dong, H.; Nyame, V.; MacDiarmid, A. G.; Jones, W. E. J. Polym. Sci. Part B: Polym. Phys. 2004, 42 (21), 3934. doi: 10.1002/polb.20253(40) Dong, H.; Nyame, V.; MacDiarmid, A. G.; Jones, W. E. J. Polym. Sci. Part B: Polym. Phys. 2004, 42 (21), 3934. doi: 10.1002/polb.20253
-
[41]
(41) Kaerkitcha, N.; Chuangchote, S.; Hachiya, K.; Sagawa, T. Polym. J. 2017, 49 (6), 497. doi: 10.1038/pj.2017.8(41) Kaerkitcha, N.; Chuangchote, S.; Hachiya, K.; Sagawa, T. Polym. J. 2017, 49 (6), 497. doi: 10.1038/pj.2017.8
-
[42]
(42) Lu, Y.; Huang, J.; Yu, G.; Cardenas, R.; Wei, S.; Wujcik, E. K.; Guo, Z. Wires. Nanomed. Nanobi. 2016, 8 (5), 654. doi: 10.1002/wnan.1391(42) Lu, Y.; Huang, J.; Yu, G.; Cardenas, R.; Wei, S.; Wujcik, E. K.; Guo, Z. Wires. Nanomed. Nanobi. 2016, 8 (5), 654. doi: 10.1002/wnan.1391
-
[43]
(43) Wang, L. H.; Yang, H.; Hou, J. Z.; Zhang, W. X.; Xiang, C. H.; Li, L. L. New J. Chem. 2017, 41 (24), 15072. doi: 10.1039/c7nj02805a(43) Wang, L. H.; Yang, H.; Hou, J. Z.; Zhang, W. X.; Xiang, C. H.; Li, L. L. New J. Chem. 2017, 41 (24), 15072. doi: 10.1039/c7nj02805a
-
[44]
(44) Kurban, Z.; Lovell, A.; Bennington, S. M.; Jenkins, D. W. K.; Ryan, K. R.; Jones, M. O.; Skipper, N. T.; David, W. I. F. J. Phys. Chem. C 2010, 114 (49), 21201. doi: 10.1021/jp107871v(44) Kurban, Z.; Lovell, A.; Bennington, S. M.; Jenkins, D. W. K.; Ryan, K. R.; Jones, M. O.; Skipper, N. T.; David, W. I. F. J. Phys. Chem. C 2010, 114 (49), 21201. doi: 10.1021/jp107871v
-
[45]
(45) Pant, B.; Park, M.; Park, S.-J. Pharmaceutics 2019, 11 (7), 305. doi: 10.3390/pharmaceutics11070305(45) Pant, B.; Park, M.; Park, S.-J. Pharmaceutics 2019, 11 (7), 305. doi: 10.3390/pharmaceutics11070305
-
[46]
(46) Yu, J. H.; Fridrikh, S. V.; Rutledge, G. C. Adv. Mater. 2004, 16 (17), 1562. doi: 10.1002/adma.200306644(46) Yu, J. H.; Fridrikh, S. V.; Rutledge, G. C. Adv. Mater. 2004, 16 (17), 1562. doi: 10.1002/adma.200306644
-
[47]
(47) Yu, D.; Bligh, L. Z. S. W. A.; Branford-White, C.; White, K. N. Chem. Commun. 2011, 47 (4), 1216. doi: 10.1039/c0cc03521a(47) Yu, D.; Bligh, L. Z. S. W. A.; Branford-White, C.; White, K. N. Chem. Commun. 2011, 47 (4), 1216. doi: 10.1039/c0cc03521a
-
[48]
(48) Muthiah, P.; Hsu, S.-H.; Sigmund, W. Langmuir 2010, 26 (15), 12483. doi: 10.1021/la100748g(48) Muthiah, P.; Hsu, S.-H.; Sigmund, W. Langmuir 2010, 26 (15), 12483. doi: 10.1021/la100748g
-
[49]
(49) Li, D.; McCann, J. T.; Xia, Y. N. Small 2005, 1 (1), 83. doi: 10.1002/smll.200400056(49) Li, D.; McCann, J. T.; Xia, Y. N. Small 2005, 1 (1), 83. doi: 10.1002/smll.200400056
-
[50]
(50) Wang, M. L.; Wang, K.; Yang, Y. Y.; Liu, Y. N.; Yu, D. G. Polymers 2020, 12 (1), 103. doi: 10.3390/polym12010103(50) Wang, M. L.; Wang, K.; Yang, Y. Y.; Liu, Y. N.; Yu, D. G. Polymers 2020, 12 (1), 103. doi: 10.3390/polym12010103
-
[51]
(51) Wang, C.; Yan, K.; Lin, Y.; Hsieh, P. C. H. Macromolecules 2010, 43 (15), 6389. doi: 10.1021/ma100423x(51) Wang, C.; Yan, K.; Lin, Y.; Hsieh, P. C. H. Macromolecules 2010, 43 (15), 6389. doi: 10.1021/ma100423x
-
[52]
(52) Xia, X.; Wang, X.; Zhou, H. M.; Niu, X.; Xue, L. G.; Zhang, X. W.; Wei, Q. F. Electrochim. Acta 2014, 121, 345. doi: 10.1016/j.electacta.2014.01.004(52) Xia, X.; Wang, X.; Zhou, H. M.; Niu, X.; Xue, L. G.; Zhang, X. W.; Wei, Q. F. Electrochim. Acta 2014, 121, 345. doi: 10.1016/j.electacta.2014.01.004
-
[53]
(53) Chan, K. H. K.; Kotaki, M. J. Appl. Polym. Sci. 2009, 111 (1), 408. doi: 10.1002/app.28994(53) Chan, K. H. K.; Kotaki, M. J. Appl. Polym. Sci. 2009, 111 (1), 408. doi: 10.1002/app.28994
-
[54]
(54) Ramakrishna, S.; Fujihara, K.; Teo, W. E.; Yong, T.; Ma, Z. W.; Ramaseshan, R. Mater. Today 2006, 9 (3), 40. doi: 10.1016/S1369-7021(06)71389-X(54) Ramakrishna, S.; Fujihara, K.; Teo, W. E.; Yong, T.; Ma, Z. W.; Ramaseshan, R. Mater. Today 2006, 9 (3), 40. doi: 10.1016/S1369-7021(06)71389-X
-
[55]
(55) Agarwal, S.; Greiner, A.; Wendorff, J. H. Prog. Polym. Sci. 2013, 38 (6), 963. doi: 10.1016/j.progpolymsci.2013.02.001(55) Agarwal, S.; Greiner, A.; Wendorff, J. H. Prog. Polym. Sci. 2013, 38 (6), 963. doi: 10.1016/j.progpolymsci.2013.02.001
-
[56]
(56) Zhao, T. Y.; Liu, Z. Y.; Kazuya, N.; Shunsuke, N.; Taketoshi, M.; Zhao, Y.; Jiang, L.; Akira, F. J. Mater. Chem. 2010, 20 (24), 5095. doi: 10.1039/c0jm00484g(56) Zhao, T. Y.; Liu, Z. Y.; Kazuya, N.; Shunsuke, N.; Taketoshi, M.; Zhao, Y.; Jiang, L.; Akira, F. J. Mater. Chem. 2010, 20 (24), 5095. doi: 10.1039/c0jm00484g
-
[57]
(57) Xi, T.; Xin, B. J. J. Ind. Text. 2016, 46 (8), 1581. doi: 10.1177/1528083715627165(57) Xi, T.; Xin, B. J. J. Ind. Text. 2016, 46 (8), 1581. doi: 10.1177/1528083715627165
-
[58]
(58) Lee, B.-S.; Jeon, S.-Y.; Park, H.; Lee, G.; Yang, H.-S.; Yu, W.-R. Sci. Rep. 2014, 4, 6758. doi: 10.1038/srep06758(58) Lee, B.-S.; Jeon, S.-Y.; Park, H.; Lee, G.; Yang, H.-S.; Yu, W.-R. Sci. Rep. 2014, 4, 6758. doi: 10.1038/srep06758
-
[59]
(59) Rahimi, M.; Mokhtari, J. J. Ind. Text. 2016, 47 (6), 1134. doi: 10.1177/1528083716676816(59) Rahimi, M.; Mokhtari, J. J. Ind. Text. 2016, 47 (6), 1134. doi: 10.1177/1528083716676816
-
[60]
(60) Kaerkitcha, N.; Chuangchote, S.; Sagawa, T. Nanoscale Res. Lett. 2016, 11, 186. doi: 10.1186/s11671-016-1416-7(60) Kaerkitcha, N.; Chuangchote, S.; Sagawa, T. Nanoscale Res. Lett. 2016, 11, 186. doi: 10.1186/s11671-016-1416-7
-
[61]
(61) Huang, F.; Xu, Y.; Peng, B.; Su, Y.; Jiang, F.; Hsieh, Y.-L.; Wei, Q. ACS Sustain. Chem. Eng. 2015, 3 (5), 932. doi: 10.1021/acssuschemeng.5b00032(61) Huang, F.; Xu, Y.; Peng, B.; Su, Y.; Jiang, F.; Hsieh, Y.-L.; Wei, Q. ACS Sustain. Chem. Eng. 2015, 3 (5), 932. doi: 10.1021/acssuschemeng.5b00032
-
[62]
(62) Janek, J.; Zeier, W. G. Nat. Energy 2023, 8 (3), 230. doi: 10.1038/s41560-023-01208-9(62) Janek, J.; Zeier, W. G. Nat. Energy 2023, 8 (3), 230. doi: 10.1038/s41560-023-01208-9
-
[63]
(63) Wang, Y.; Feng, X.; Huang, W.; He, X.; Wang, L.; Ouyang, M. Adv. Energy Mater. 2023, 13 (15), 2203841. doi: 10.1002/aenm.202203841(63) Wang, Y.; Feng, X.; Huang, W.; He, X.; Wang, L.; Ouyang, M. Adv. Energy Mater. 2023, 13 (15), 2203841. doi: 10.1002/aenm.202203841
-
[64]
(64) Sun, J.; Ye, L.; Zhao, X.; Zhang, P.; Yang, J. Molecules 2023, 28 (5), 2108. doi: 10.3390/molecules28052108(64) Sun, J.; Ye, L.; Zhao, X.; Zhang, P.; Yang, J. Molecules 2023, 28 (5), 2108. doi: 10.3390/molecules28052108
-
[65]
(65) Bi, J.; Du, Z.; Sun, J.; Liu, Y.; Wang, K.; Du, H.; Ai, W.; Huang, W. Adv. Mater. 2023, 35 (16), 2210734. doi: 10.1002/adma.202210734(65) Bi, J.; Du, Z.; Sun, J.; Liu, Y.; Wang, K.; Du, H.; Ai, W.; Huang, W. Adv. Mater. 2023, 35 (16), 2210734. doi: 10.1002/adma.202210734
-
[66]
(66) Nishi, Y. Chem. Rec. 2001, 1 (5), 406. doi: 10.1002/tcr.1024(66) Nishi, Y. Chem. Rec. 2001, 1 (5), 406. doi: 10.1002/tcr.1024
-
[67]
(67) Zhu, S.; Li, H.; Hu, Z.; Zhang, Q.; Zhao, J.; Zhang, L. Acta Phys. -Chim. Sin. 2022, 38 (6), 2103052. [朱思颖, 李辉阳, 胡忠利, 张桥保, 赵金保, 张力. 物理化学学报, 2022, 38 (6), 2103052.] doi: 10.3866/PKU.WHXB202103052
-
[68]
(68) Bi, C.-X.; Hou, L.-P.; Li, Z.; Zhao, M.; Zhang, X.-Q.; Li, B.-Q.; Zhang, Q.; Huang, J.-Q. Energy Mater. Adv. 2023, 4, 0010. doi: 10.34133/energymatadv.0010(68) Bi, C.-X.; Hou, L.-P.; Li, Z.; Zhao, M.; Zhang, X.-Q.; Li, B.-Q.; Zhang, Q.; Huang, J.-Q. Energy Mater. Adv. 2023, 4, 0010. doi: 10.34133/energymatadv.0010
-
[69]
(69) Yuan, S.; Lai, Q.; Duan, X.; Wang, Q. J. Energy Storage 2023, 61, 106716. doi: 10.1016/j.est.2023.106716(69) Yuan, S.; Lai, Q.; Duan, X.; Wang, Q. J. Energy Storage 2023, 61, 106716. doi: 10.1016/j.est.2023.106716
-
[70]
(70) Ezhyeh, Z. N.; Khodaei, M.; Torabi, F. Ceram. Int. 2023, 49 (5), 7105. doi: 10.1016/j.ceramint.2022.04.340(70) Ezhyeh, Z. N.; Khodaei, M.; Torabi, F. Ceram. Int. 2023, 49 (5), 7105. doi: 10.1016/j.ceramint.2022.04.340
-
[71]
(71) Wang, Z. H.; Kang, K. Y.; Wu, J. X.; Hu, Q.; Harper, D. P.; Du, G. B.; Wang, S. Q.; Xu, K. M. J. Mater. Res. Technol. 2021, 11, 50. doi: 10.1016/j.jmrt.2021.01.009(71) Wang, Z. H.; Kang, K. Y.; Wu, J. X.; Hu, Q.; Harper, D. P.; Du, G. B.; Wang, S. Q.; Xu, K. M. J. Mater. Res. Technol. 2021, 11, 50. doi: 10.1016/j.jmrt.2021.01.009
-
[72]
(72) Liu, B. X.; Yu, Y. H.; Chang, J.; Yang, X. J.; Wu, D. Z.; Yang, X. P. Electrochem. Commun. 2011, 13 (6), 558. doi: 10.1016/j.elecom.2011.03.009(72) Liu, B. X.; Yu, Y. H.; Chang, J.; Yang, X. J.; Wu, D. Z.; Yang, X. P. Electrochem. Commun. 2011, 13 (6), 558. doi: 10.1016/j.elecom.2011.03.009
-
[73]
(73) Lee, B.-S.; Son, S.-B.; Park, K.-M.; Seo, J.-H.; Choi, S.-H. L. I.-S.; Oh, K.-H.; Yu, W.-R. J. Power Sources 2012, 206, 267. doi: 10.1016/j.jpowsour.2012.01.120(73) Lee, B.-S.; Son, S.-B.; Park, K.-M.; Seo, J.-H.; Choi, S.-H. L. I.-S.; Oh, K.-H.; Yu, W.-R. J. Power Sources 2012, 206, 267. doi: 10.1016/j.jpowsour.2012.01.120
-
[74]
(74) Yu, Y.; Gu, L.; Wang, C.; Dhanabalan, A.; Aken, P. A. V.; Maier, J. Angew. Chem. Int. Ed. 2009, 48 (35), 6485. doi: 10.1002/anie.200901723(74) Yu, Y.; Gu, L.; Wang, C.; Dhanabalan, A.; Aken, P. A. V.; Maier, J. Angew. Chem. Int. Ed. 2009, 48 (35), 6485. doi: 10.1002/anie.200901723
-
[75]
(75) Li, X. Y.; Chen, Y. M.; Zhou, L. M.; Mai, Y.-W.; Huang, H. T. J. Mater. Chem. A 2014, 2 (11), 3875. doi: 10.1039/c3ta14646d(75) Li, X. Y.; Chen, Y. M.; Zhou, L. M.; Mai, Y.-W.; Huang, H. T. J. Mater. Chem. A 2014, 2 (11), 3875. doi: 10.1039/c3ta14646d
-
[76]
(76) Zhang, X.; Aravindan, V.; Kumar, P. S.; Liu, H.; Sundaramurthy, J.; Ramakrishna, S.; Madhavi, S. Nanoscale 2013, 5 (13), 5973. doi: 10.1039/c3nr01128c(76) Zhang, X.; Aravindan, V.; Kumar, P. S.; Liu, H.; Sundaramurthy, J.; Ramakrishna, S.; Madhavi, S. Nanoscale 2013, 5 (13), 5973. doi: 10.1039/c3nr01128c
-
[77]
(77) Liu, Q.; Hu, Y.; Yu, X.; Qin, Y.; Meng, T.; Hu, X. Nano Res. Energy 2022, 1, e9120037. doi: 10.26599/nre.2022.9120037(77) Liu, Q.; Hu, Y.; Yu, X.; Qin, Y.; Meng, T.; Hu, X. Nano Res. Energy 2022, 1, e9120037. doi: 10.26599/nre.2022.9120037
-
[78]
(78) Lee, B.-S.; Son, S.-B.; Park, K.-M.; Yu, W.-R.; Oh, K.-H.; Lee, S.-H. J. Power Sources 2012, 199, 53. doi: 10.1016/j.jpowsour.2011.10.030(78) Lee, B.-S.; Son, S.-B.; Park, K.-M.; Yu, W.-R.; Oh, K.-H.; Lee, S.-H. J. Power Sources 2012, 199, 53. doi: 10.1016/j.jpowsour.2011.10.030
-
[79]
(79) Lee, B.-S.; Son, S.-B.; Park, K.-M.; Lee, G.; Oh, K. H.; Lee, S.-H.; Yu, W.-R. ACS Appl. Mater. Interfaces 2012, 4 (12), 6701. doi: 10.1021/am301873d(79) Lee, B.-S.; Son, S.-B.; Park, K.-M.; Lee, G.; Oh, K. H.; Lee, S.-H.; Yu, W.-R. ACS Appl. Mater. Interfaces 2012, 4 (12), 6701. doi: 10.1021/am301873d
-
[80]
(80) Lee, B. S.; Yang, H. S.; Yu, W. R. Nanotechnology 2014, 25 (46), 465602. doi: 10.1088/0957-4484/25/46/465602(80) Lee, B. S.; Yang, H. S.; Yu, W. R. Nanotechnology 2014, 25 (46), 465602. doi: 10.1088/0957-4484/25/46/465602
-
[81]
(81) Chen, Y. M.; Lu, Z. G.; Zhou, L. M.; Maiab, Y. W.; Huang, H. T. Energy Environ. Sci. 2012, 5 (7), 7898. doi: 10.1039/c2ee22085g(81) Chen, Y. M.; Lu, Z. G.; Zhou, L. M.; Maiab, Y. W.; Huang, H. T. Energy Environ. Sci. 2012, 5 (7), 7898. doi: 10.1039/c2ee22085g
-
[82]
(82) Liu, J.-C.; Ma, L.-L.; Li, S.; Hou, L.-L.; Qi, X.-R.; Wen, Y.-Q.; Hu, G.-P.; Wang, N.; Zhao, Y.; Zhao, X.-X. Rare Met. 2023, 42 (10), 3378. doi: 10.1007/s12598-023-02372-3(82) Liu, J.-C.; Ma, L.-L.; Li, S.; Hou, L.-L.; Qi, X.-R.; Wen, Y.-Q.; Hu, G.-P.; Wang, N.; Zhao, Y.; Zhao, X.-X. Rare Met. 2023, 42 (10), 3378. doi: 10.1007/s12598-023-02372-3
-
[83]
(83) Yang, H.-S.; Lee, B.-S.; You, B.-C.; Sohn, H.-J.; Yu, W.-R. RSC Adv. 2014, 4 (88), 47389. doi: 10.1039/c4ra10031j(83) Yang, H.-S.; Lee, B.-S.; You, B.-C.; Sohn, H.-J.; Yu, W.-R. RSC Adv. 2014, 4 (88), 47389. doi: 10.1039/c4ra10031j
-
[84]
(84) Tong, F. L.; Guo, J. X.; Pan, Y. L.; Liu, H. B.; Lv, Y.; Wu, X. Y.; Jia, D. Z.; Zhao, X. J.; Hou, S. C. J. Colloid Interface Sci. 2021, 586, 371. doi: 10.1016/j.jcis.2020.10.100(84) Tong, F. L.; Guo, J. X.; Pan, Y. L.; Liu, H. B.; Lv, Y.; Wu, X. Y.; Jia, D. Z.; Zhao, X. J.; Hou, S. C. J. Colloid Interface Sci. 2021, 586, 371. doi: 10.1016/j.jcis.2020.10.100
-
[85]
(85) Yu, H.; Chen, L.; Li, W. X.; Dirican, M.; Liu, Y.; Zhang, X. W. J. Alloy. Compd. 2021, 863, 158481. doi: 10.1016/j.jallcom.2020.158481(85) Yu, H.; Chen, L.; Li, W. X.; Dirican, M.; Liu, Y.; Zhang, X. W. J. Alloy. Compd. 2021, 863, 158481. doi: 10.1016/j.jallcom.2020.158481
-
[86]
(86) Zhang, C.; Yan, J.; Song, R.; Chen, L.; Liu, Y. J. Mater. Sci. 2021, 56 (36), 19996. doi: 10.1007/s10853-021-06532-7(86) Zhang, C.; Yan, J.; Song, R.; Chen, L.; Liu, Y. J. Mater. Sci. 2021, 56 (36), 19996. doi: 10.1007/s10853-021-06532-7
-
[87]
(87) Hwang, T. H.; Lee, Y. M.; Kong, B.-S.; Seo, J.-S.; Choi, J. W. Nano Lett. 2012, 12 (2), 802. doi: 10.1021/nl203817r(87) Hwang, T. H.; Lee, Y. M.; Kong, B.-S.; Seo, J.-S.; Choi, J. W. Nano Lett. 2012, 12 (2), 802. doi: 10.1021/nl203817r
-
[88]
(88) Wang, J.; Yu, Y.; Gu, L.; Wang, C.; Tang, K.; Maier, J. Nanoscale 2013, 5 (7), 2647. doi: 10.1039/c3nr00322a(88) Wang, J.; Yu, Y.; Gu, L.; Wang, C.; Tang, K.; Maier, J. Nanoscale 2013, 5 (7), 2647. doi: 10.1039/c3nr00322a
-
[89]
(89) Lee, B.-S.; Yang, H.-S.; Jung, H.; Mah, S. K.; Kwon, S.; Park, J.-H.; Lee, K. H.; Yu, W.-R.; Doo, S.-G. Eur. Polym. J. 2015, 70, 392. doi: 10.1016/j.eurpolymj.2015.07.041(89) Lee, B.-S.; Yang, H.-S.; Jung, H.; Mah, S. K.; Kwon, S.; Park, J.-H.; Lee, K. H.; Yu, W.-R.; Doo, S.-G. Eur. Polym. J. 2015, 70, 392. doi: 10.1016/j.eurpolymj.2015.07.041
-
[90]
(90) Zeng, L.; Xi, H. X.; Liu, X. A.; Zhang, C. H. Nanomaterials 2021, 11 (12), 3454. doi: 10.3390/nano11123454(90) Zeng, L.; Xi, H. X.; Liu, X. A.; Zhang, C. H. Nanomaterials 2021, 11 (12), 3454. doi: 10.3390/nano11123454
-
[91]
(91) Wu, J. X.; Qin, X. Y.; Miao, C.; He, Y.-B.; Liang, G. M.; Zhou, D.; Liu, M.; Han, C. P.; Li, B. H.; Kang, F. Y. Carbon 2016, 98, 582. doi: 10.1016/j.carbon.2015.11.048(91) Wu, J. X.; Qin, X. Y.; Miao, C.; He, Y.-B.; Liang, G. M.; Zhou, D.; Liu, M.; Han, C. P.; Li, B. H.; Kang, F. Y. Carbon 2016, 98, 582. doi: 10.1016/j.carbon.2015.11.048
-
[92]
(92) Wang, F.; Zhang, S. Z.; Zhang, J. W.; Han, M. S.; Pan, G. X.; Chen, M. H. e-Polymers 2020, 20 (1), 491. doi: 10.1515/epoly-2020-0023(92) Wang, F.; Zhang, S. Z.; Zhang, J. W.; Han, M. S.; Pan, G. X.; Chen, M. H. e-Polymers 2020, 20 (1), 491. doi: 10.1515/epoly-2020-0023
-
[93]
(93) Lee, B.-S.; Son, S.-B.; Seo, J.-H.; Park, K.-M.; Lee, G.; Lee, S.-H.; Oh, K. H.; Ahn, J.-P.; Yu, W.-R. Nanoscale 2013, 5 (11), 4790. doi: 10.1039/c3nr00982c(93) Lee, B.-S.; Son, S.-B.; Seo, J.-H.; Park, K.-M.; Lee, G.; Lee, S.-H.; Oh, K. H.; Ahn, J.-P.; Yu, W.-R. Nanoscale 2013, 5 (11), 4790. doi: 10.1039/c3nr00982c
-
[94]
(94) Lee, B.-S.; Yang, H.-S.; Jung, H.; Jeon, S.-Y.; Jung, C.; Kim, S.-W.; Bae, J.; Choong, C.-L.; Im, J.; Chung, U.-I.; et al. Nanoscale 2014, 6 (11), 5989. doi: 10.1039/c4nr00318g(94) Lee, B.-S.; Yang, H.-S.; Jung, H.; Jeon, S.-Y.; Jung, C.; Kim, S.-W.; Bae, J.; Choong, C.-L.; Im, J.; Chung, U.-I.; et al. Nanoscale 2014, 6 (11), 5989. doi: 10.1039/c4nr00318g
-
[95]
(95) Jiang, R.; Yuan, H.; Wei, X.; Wang, H.; Shin, H.-J.; Lan, J.; Yu, Y.; Yang, X. Mater. Chem. Front. 2021, 5 (23), 8218. doi: 10.1039/d1qm00823d(95) Jiang, R.; Yuan, H.; Wei, X.; Wang, H.; Shin, H.-J.; Lan, J.; Yu, Y.; Yang, X. Mater. Chem. Front. 2021, 5 (23), 8218. doi: 10.1039/d1qm00823d
-
[96]
(96) Li, C.; Yuan, C.; Zhu, J.; Ni, X.; Li, K.; Wang, L.; Qi, Y.; Ju, A. Colloids Surf. A 2022, 655, 129721. doi: 10.1016/j.colsurfa.2022.129721(96) Li, C.; Yuan, C.; Zhu, J.; Ni, X.; Li, K.; Wang, L.; Qi, Y.; Ju, A. Colloids Surf. A 2022, 655, 129721. doi: 10.1016/j.colsurfa.2022.129721
-
[97]
(97) Wang, Y.; Yuan, C.; Li, K.; Li, D.; Ju, A. ACS Appl. Energy Mater. 2022, 5 (9), 11462. doi: 10.1021/acsaem.2c01898(97) Wang, Y.; Yuan, C.; Li, K.; Li, D.; Ju, A. ACS Appl. Energy Mater. 2022, 5 (9), 11462. doi: 10.1021/acsaem.2c01898
-
[98]
(98) Li, Y.; Xu, G.; Yao, Y.; Xue, L.; Yanilmaz, M.; Lee, H.; Zhang, X. Solid State Ionics 2014, 258, 67. doi: 10.1016/j.ssi.2014.02.003(98) Li, Y.; Xu, G.; Yao, Y.; Xue, L.; Yanilmaz, M.; Lee, H.; Zhang, X. Solid State Ionics 2014, 258, 67. doi: 10.1016/j.ssi.2014.02.003
-
[99]
(99) Zhang, H. R.; Qin, X. Y.; Wu, J. X.; He, Y.-B.; Du, H. D.; Li, B. H.; Kang, F. Y. J. Mater. Chem. A 2015, 3 (13), 7112. doi: 10.1039/c4ta06044j(99) Zhang, H. R.; Qin, X. Y.; Wu, J. X.; He, Y.-B.; Du, H. D.; Li, B. H.; Kang, F. Y. J. Mater. Chem. A 2015, 3 (13), 7112. doi: 10.1039/c4ta06044j
-
[100]
(100) Ryu, J.; Choi, S.; Bok, T.; Park, S. Nanoscale 2015, 7 (14), 6126. doi: 10.1039/c5nr00224a(100) Ryu, J.; Choi, S.; Bok, T.; Park, S. Nanoscale 2015, 7 (14), 6126. doi: 10.1039/c5nr00224a
-
[101]
(101) Liu, X.; Jiang, Y. H.; Li, K. F.; Xu, F.; Zhang, P.; Ding, Y. H. Mater. Res. Bull. 2019, 109, 41. doi: 10.1016/j.materresbull.2018.09.023(101) Liu, X.; Jiang, Y. H.; Li, K. F.; Xu, F.; Zhang, P.; Ding, Y. H. Mater. Res. Bull. 2019, 109, 41. doi: 10.1016/j.materresbull.2018.09.023
-
[102]
(102) Park, H.; Song, T.; Han, H.; Devadoss, A.; Yuh, J.; Choi, C.; Paik, U. Electrochem. Commun. 2012, 22, 81. doi: 10.1016/j.elecom.2012.05.034(102) Park, H.; Song, T.; Han, H.; Devadoss, A.; Yuh, J.; Choi, C.; Paik, U. Electrochem. Commun. 2012, 22, 81. doi: 10.1016/j.elecom.2012.05.034
-
[103]
(103) Xie, S. M.; Yao, T. H.; Wang, J. K.; Alsulami, H.; Wang, H. K. ChemistrySelect 2020, 5 (11), 3225. doi: 10.1002/slct.202000288(103) Xie, S. M.; Yao, T. H.; Wang, J. K.; Alsulami, H.; Wang, H. K. ChemistrySelect 2020, 5 (11), 3225. doi: 10.1002/slct.202000288
-
[104]
(104) Li, M.; Zhou, D.; Song, W. L.; Li, X. G.; Fan, L. Z. J. Mater. Chem. A 2015, 3 (39), 19907. doi: 10.1039/c5ta05400a(104) Li, M.; Zhou, D.; Song, W. L.; Li, X. G.; Fan, L. Z. J. Mater. Chem. A 2015, 3 (39), 19907. doi: 10.1039/c5ta05400a
-
[105]
(105) Cui, Z. T.; Wang, S. G.; Zhang, Y. H.; Cao, M. H. Electrochim. Acta 2015, 182, 507. doi: 10.1016/j.electacta.2015.09.120(105) Cui, Z. T.; Wang, S. G.; Zhang, Y. H.; Cao, M. H. Electrochim. Acta 2015, 182, 507. doi: 10.1016/j.electacta.2015.09.120
-
[106]
(106) Shilpa; Basavaraja, B. M.; Majumder, S. B.; Sharma, A. J. Mater. Chem. A 2015, 3 (10), 5344. doi: 10.1039/c4ta07220k(106) Shilpa; Basavaraja, B. M.; Majumder, S. B.; Sharma, A. J. Mater. Chem. A 2015, 3 (10), 5344. doi: 10.1039/c4ta07220k
-
[107]
(107) Zhang, M.; Huang, X. X.; Xin, H. L.; Li, D. Z.; Zhao, Y.; Shi, L. D.; Lin, Y. M.; Yu, J. L.; Yu, Z. Q.; Zhu, C. Z.; et al. Appl. Surf. Sci. 2019, 473, 352. doi: 10.1016/j.apsusc.2018.12.098(107) Zhang, M.; Huang, X. X.; Xin, H. L.; Li, D. Z.; Zhao, Y.; Shi, L. D.; Lin, Y. M.; Yu, J. L.; Yu, Z. Q.; Zhu, C. Z.; et al. Appl. Surf. Sci. 2019, 473, 352. doi: 10.1016/j.apsusc.2018.12.098
-
[108]
(108) Huang, Z.; Yu, K.; Wang, D.; Zhang, Y.; Li, L.; Liang, C. Colloids Surf. A 2022, 653, 129953. doi: 10.1016/j.colsurfa.2022.129953(108) Huang, Z.; Yu, K.; Wang, D.; Zhang, Y.; Li, L.; Liang, C. Colloids Surf. A 2022, 653, 129953. doi: 10.1016/j.colsurfa.2022.129953
-
[109]
(109) Feng, D.; Chen, Q.; Li, Z.; Zeng, T. J. Alloy. Compd. 2023, 960, 170851. doi: 10.1016/j.jallcom.2023.170851(109) Feng, D.; Chen, Q.; Li, Z.; Zeng, T. J. Alloy. Compd. 2023, 960, 170851. doi: 10.1016/j.jallcom.2023.170851
-
[110]
(110) Zeng, T. B.; Feng, D.; Liu, Q.; Zhou, R. Y. ACS Appl. Mater. Interfaces 2021, 13 (28), 32978. doi: 10.1021/acsami.1c07387(110) Zeng, T. B.; Feng, D.; Liu, Q.; Zhou, R. Y. ACS Appl. Mater. Interfaces 2021, 13 (28), 32978. doi: 10.1021/acsami.1c07387
-
[111]
(111) Hu, H. B.; Yang, Y. X.; Jiang, X.; Wang, J. X.; Cao, D. W.; He, L.; Chen, W.; Song, Y. F. Chem. -Eur. J. 2021, 27 (53), 13367. doi: 10.1002/chem.202101638(111) Hu, H. B.; Yang, Y. X.; Jiang, X.; Wang, J. X.; Cao, D. W.; He, L.; Chen, W.; Song, Y. F. Chem. -Eur. J. 2021, 27 (53), 13367. doi: 10.1002/chem.202101638
-
[112]
(112) Zhou, D.; Song, W. L.; Fan, L. Z. ACS Appl. Mater. Interfaces 2015, 7 (38), 21472. doi: 10.1021/acsami.5b06512(112) Zhou, D.; Song, W. L.; Fan, L. Z. ACS Appl. Mater. Interfaces 2015, 7 (38), 21472. doi: 10.1021/acsami.5b06512
-
[113]
(113) Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nat. Mater. 2005, 4 (5), 366. doi: 10.1038/nmat1368(113) Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nat. Mater. 2005, 4 (5), 366. doi: 10.1038/nmat1368
-
[114]
(114) Liu, S.; Pan, G. L.; Yan, N. F.; Gao, X. P. Energy Environ. Sci. 2010, 3 (11), 1732. doi: 10.1039/c0ee00170h(114) Liu, S.; Pan, G. L.; Yan, N. F.; Gao, X. P. Energy Environ. Sci. 2010, 3 (11), 1732. doi: 10.1039/c0ee00170h
-
[115]
(115) Yuan, T.; Zhao, B. T.; Cai, R.; Zhou, Y. K.; Shao, Z. P. J. Mater. Chem. 2011, 21 (38), 15041. doi: 10.1039/c1jm11483b(115) Yuan, T.; Zhao, B. T.; Cai, R.; Zhou, Y. K.; Shao, Z. P. J. Mater. Chem. 2011, 21 (38), 15041. doi: 10.1039/c1jm11483b
-
[116]
(116) Xing, J.; Bliznakov, S.; Bonville, L.; Oljaca, M.; Maric, R. Electrochem. Energy Rev. 2022, 5 (4), 14. doi: 10.1007/s41918-022-00131-z(116) Xing, J.; Bliznakov, S.; Bonville, L.; Oljaca, M.; Maric, R. Electrochem. Energy Rev. 2022, 5 (4), 14. doi: 10.1007/s41918-022-00131-z
-
[117]
(117) Lin, W. X.; Wang, F.; Wang, H. B.; Li, H.; Fan, Y.; Chan, D.; Chen, S. W.; Tang, Y. X.; Zhang, Y. Y. ChemSusChem 2022, 15 (24), e202201464 doi: 10.1002/cssc.202201464(117) Lin, W. X.; Wang, F.; Wang, H. B.; Li, H.; Fan, Y.; Chan, D.; Chen, S. W.; Tang, Y. X.; Zhang, Y. Y. ChemSusChem 2022, 15 (24), e202201464 doi: 10.1002/cssc.202201464
-
[118]
(118) Kim, A.; Oh, S. H.; Adhikari, A.; Sathe, B. R.; Kumar, S.; Patel, R. J. Mater. Chem. A 2023, 11 (15), 7833. doi: 10.1039/d2ta09266b(118) Kim, A.; Oh, S. H.; Adhikari, A.; Sathe, B. R.; Kumar, S.; Patel, R. J. Mater. Chem. A 2023, 11 (15), 7833. doi: 10.1039/d2ta09266b
-
[119]
(119) Babiker, D. M. D.; Usha, Z. R.; Wan, C.; Hassaan, M. M. E.; Chen, X.; Li, L. J. Power Sources 2023, 564, 232853. doi: 10.1016/j.jpowsour.2023.232853(119) Babiker, D. M. D.; Usha, Z. R.; Wan, C.; Hassaan, M. M. E.; Chen, X.; Li, L. J. Power Sources 2023, 564, 232853. doi: 10.1016/j.jpowsour.2023.232853
-
[120]
(120) Lagadec, M. F.; Zahn, R.; Wood, V. Nat. Energy 2018, 4 (1), 16. doi: 10.1038/s41560-018-0295-9(120) Lagadec, M. F.; Zahn, R.; Wood, V. Nat. Energy 2018, 4 (1), 16. doi: 10.1038/s41560-018-0295-9
-
[121]
(121) Arora, P.; Zhang, Z. M. Chem. Rev. 2004, 104 (10), 4419. doi: 10.1021/cr020738u(121) Arora, P.; Zhang, Z. M. Chem. Rev. 2004, 104 (10), 4419. doi: 10.1021/cr020738u
-
[122]
(122) Li, Y.; Li, P.; Lan, X.; Jiang, Y.; Hu, X. Mater. Today Phys. 2023, 38, 101256. doi: 10.1016/j.mtphys.2023.101256(122) Li, Y.; Li, P.; Lan, X.; Jiang, Y.; Hu, X. Mater. Today Phys. 2023, 38, 101256. doi: 10.1016/j.mtphys.2023.101256
-
[123]
(123) Li, P.; Wang, Y.; Liu, Z.; Hu, X. Mater. Chem. Front. 2023. doi: 10.1039/d3qm00709j(123) Li, P.; Wang, Y.; Liu, Z.; Hu, X. Mater. Chem. Front. 2023. doi: 10.1039/d3qm00709j
-
[124]
(124) Liu, Z.; Peng, Y.; Meng, T.; Yu, L.; Wang, S.; Hu, X. Energy Storage Mater. 2022, 47, 445. doi: 10.1016/j.ensm.2022.02.020(124) Liu, Z.; Peng, Y.; Meng, T.; Yu, L.; Wang, S.; Hu, X. Energy Storage Mater. 2022, 47, 445. doi: 10.1016/j.ensm.2022.02.020
-
[125]
(125) Zhou, X. H.; Yue, L. P.; Zhang, J. J.; Kong, Q. S.; Liu, Z. H.; Yao, J. H.; Cui, G. L. J. Electrochem. Soc. 2013, 160 (9), A1341. doi: 10.1149/2.003309jes(125) Zhou, X. H.; Yue, L. P.; Zhang, J. J.; Kong, Q. S.; Liu, Z. H.; Yao, J. H.; Cui, G. L. J. Electrochem. Soc. 2013, 160 (9), A1341. doi: 10.1149/2.003309jes
-
[126]
(126) Miao, Y.; Zhu, G.; Hou, H.; Xia, Y.; Liu, T. J. Power Sources 2013, 226, 82. doi: 10.1016/j.jpowsour.2012.10.027(126) Miao, Y.; Zhu, G.; Hou, H.; Xia, Y.; Liu, T. J. Power Sources 2013, 226, 82. doi: 10.1016/j.jpowsour.2012.10.027
-
[127]
(127) Sun, G. H.; Kong, L. S.; Liu, B. X.; Niu, H. Q.; Zhang, M. Y.; Tian, G. F.; Qi, S. L.; Wu, D. Z. J. Membr. Sci. 2019, 582, 132. doi: 10.1016/j.memsci.2019.04.005(127) Sun, G. H.; Kong, L. S.; Liu, B. X.; Niu, H. Q.; Zhang, M. Y.; Tian, G. F.; Qi, S. L.; Wu, D. Z. J. Membr. Sci. 2019, 582, 132. doi: 10.1016/j.memsci.2019.04.005
-
[128]
(128) Dong, G. Q.; Sun, G. H.; Tian, G. F.; Qi, S. L.; Wu, D. Z. Energy Technol. 2019, 7 (7), 1801072. doi: 10.1002/ente.201801072(128) Dong, G. Q.; Sun, G. H.; Tian, G. F.; Qi, S. L.; Wu, D. Z. Energy Technol. 2019, 7 (7), 1801072. doi: 10.1002/ente.201801072
-
[129]
(129) Kim, Y.; Lee, W.-Y.; Kim, K. J.; Yu, J.-S.; Kim, Y.-J. J. Power Sources 2016, 305, 225. doi: 10.1016/j.jpowsour.2015.11.106(129) Kim, Y.; Lee, W.-Y.; Kim, K. J.; Yu, J.-S.; Kim, Y.-J. J. Power Sources 2016, 305, 225. doi: 10.1016/j.jpowsour.2015.11.106
-
[130]
(130) Ma, X. J.; Kolla, P.; Yang, R. D.; Wang, Z.; Zhao, Y.; Smirnova, A. L.; Fong, H. Electrochim. Acta 2017, 236, 417. doi: 10.1016/j.electacta.2017.03.205(130) Ma, X. J.; Kolla, P.; Yang, R. D.; Wang, Z.; Zhao, Y.; Smirnova, A. L.; Fong, H. Electrochim. Acta 2017, 236, 417. doi: 10.1016/j.electacta.2017.03.205
-
[131]
(131) Kong, L. S.; Liu, B. X.; Ding, J. L.; Yan, X. N.; Tian, G. F.; Qi, S. L.; Wu, D. Z. J. Membr. Sci. 2018, 549, 244. doi: 10.1016/j.memsci.2017.12.015(131) Kong, L. S.; Liu, B. X.; Ding, J. L.; Yan, X. N.; Tian, G. F.; Qi, S. L.; Wu, D. Z. J. Membr. Sci. 2018, 549, 244. doi: 10.1016/j.memsci.2017.12.015
-
[132]
(132) Zhao, H. J.; Kang, W. M.; Deng, N. P.; Liu, M.; Cheng, B. W. Chem. Eng. J. 2020, 384, 123312. doi: 10.1016/j.cej.2019.123312(132) Zhao, H. J.; Kang, W. M.; Deng, N. P.; Liu, M.; Cheng, B. W. Chem. Eng. J. 2020, 384, 123312. doi: 10.1016/j.cej.2019.123312
-
[133]
(133) Zhao, H. J.; Deng, N. P.; Kang, W. M.; Cheng, B. W. Chem. Eng. J. 2020, 390, 124571. doi: 10.1016/j.cej.2020.124571(133) Zhao, H. J.; Deng, N. P.; Kang, W. M.; Cheng, B. W. Chem. Eng. J. 2020, 390, 124571. doi: 10.1016/j.cej.2020.124571
-
[134]
(134) Ma, Y.; Hu, J. P.; Wang, Z. T.; Zhu, Y. Q.; Ma, X. L.; Cao, C. B. J. Power Sources 2020, 451, 227759. doi: 10.1016/j.jpowsour.2020.227759(134) Ma, Y.; Hu, J. P.; Wang, Z. T.; Zhu, Y. Q.; Ma, X. L.; Cao, C. B. J. Power Sources 2020, 451, 227759. doi: 10.1016/j.jpowsour.2020.227759
-
[135]
(135) Kim, J. R.; Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, B. C. Electrochim. Acta 2004, 50 (1), 69. doi: 10.1016/j.electacta.2004.07.014(135) Kim, J. R.; Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, B. C. Electrochim. Acta 2004, 50 (1), 69. doi: 10.1016/j.electacta.2004.07.014
-
[136]
(136) Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, Y.-R. Adv. Mater. 2003, 15 (23), 2027. doi: 10.1002/adma.200304617(136) Choi, S. W.; Jo, S. M.; Lee, W. S.; Kim, Y.-R. Adv. Mater. 2003, 15 (23), 2027. doi: 10.1002/adma.200304617
-
[137]
(137) Liu, Z. H.; Jiang, W.; Kong, Q. S.; Zhang, C. J.; Han, P. X.; Wang, X. J.; Yao, J. H.; Cui, G. L. Macromol. Mater. Eng. 2013, 298 (7), 806. doi: 10.1002/mame.201200158(137) Liu, Z. H.; Jiang, W.; Kong, Q. S.; Zhang, C. J.; Han, P. X.; Wang, X. J.; Yao, J. H.; Cui, G. L. Macromol. Mater. Eng. 2013, 298 (7), 806. doi: 10.1002/mame.201200158
-
[138]
(138) Hu, M. F.; Ma, Q. Y.; Yuan, Y.; Pan, Y. K.; Chen, M. Q.; Zhang, Y. Y.; Long, D. H. Chem. Eng. J. 2020, 388, 124258. doi: 10.1016/j.cej.2020.124258(138) Hu, M. F.; Ma, Q. Y.; Yuan, Y.; Pan, Y. K.; Chen, M. Q.; Zhang, Y. Y.; Long, D. H. Chem. Eng. J. 2020, 388, 124258. doi: 10.1016/j.cej.2020.124258
-
[139]
(139) Liu, K.; Liu, W.; Qiu, Y. C.; Kong, B. A.; Sun, Y. M.; Chen, Z.; Zhuo, D.; Lin, D. C.; Cui, Y. Sci. Adv. 2017, 3 (1), e1601978. doi: 10.1126/sciadv.1601978(139) Liu, K.; Liu, W.; Qiu, Y. C.; Kong, B. A.; Sun, Y. M.; Chen, Z.; Zhuo, D.; Lin, D. C.; Cui, Y. Sci. Adv. 2017, 3 (1), e1601978. doi: 10.1126/sciadv.1601978
-
[140]
(140) Yusuf, A.; Avvaru, V. S.; Dirican, M.; Changchun, S.; Wang, D.-Y. Appl. Mater. Today 2020, 20, 100675. doi: 10.1016/j.apmt.2020.100675(140) Yusuf, A.; Avvaru, V. S.; Dirican, M.; Changchun, S.; Wang, D.-Y. Appl. Mater. Today 2020, 20, 100675. doi: 10.1016/j.apmt.2020.100675
-
[141]
(141) Yang, K. C.; Liu, Z. L.; Chai, J. C.; Zheng, Y.; Fu, X. N.; Shen, Y. H.; Chen, J.; Liu, Z. H.; Shi, S. W. Mater. Chem. Phys. 2022, 282, 125975. doi: 10.1016/j.matchemphys.2022.125975(141) Yang, K. C.; Liu, Z. L.; Chai, J. C.; Zheng, Y.; Fu, X. N.; Shen, Y. H.; Chen, J.; Liu, Z. H.; Shi, S. W. Mater. Chem. Phys. 2022, 282, 125975. doi: 10.1016/j.matchemphys.2022.125975
-
[142]
(142) Liang, Z.; Zhao, Y.; Li, Y. X. Energies 2019, 12 (17), 3391. doi: 10.3390/en12173391(142) Liang, Z.; Zhao, Y.; Li, Y. X. Energies 2019, 12 (17), 3391. doi: 10.3390/en12173391
-
[143]
(143) Yang, S. T.; Ma, W. H.; Wang, A. L.; Gu, J. F.; Yin, Y. H. RSC Adv. 2018, 8 (41), 23390. doi: 10.1039/c8ra02035c(143) Yang, S. T.; Ma, W. H.; Wang, A. L.; Gu, J. F.; Yin, Y. H. RSC Adv. 2018, 8 (41), 23390. doi: 10.1039/c8ra02035c
-
[144]
(144) Wang, L. Y.; Deng, N. P.; Ju, J. G.; Wang, G.; Cheng, B. W.; Kang, W. M. Electrochim. Acta 2019, 300, 263. doi: 10.1016/j.electacta.2019.01.115(144) Wang, L. Y.; Deng, N. P.; Ju, J. G.; Wang, G.; Cheng, B. W.; Kang, W. M. Electrochim. Acta 2019, 300, 263. doi: 10.1016/j.electacta.2019.01.115
-
[145]
(145) Gao, X.; Sheng, L.; Yang, L.; Xie, X.; Li, D.; Gong, Y.; Cao, M.; Bai, Y.; Dong, H.; Liu, G.; et al. J. Colloid Interface Sci. 2023, 636, 317. doi: 10.1016/j.jcis.2023.01.033(145) Gao, X.; Sheng, L.; Yang, L.; Xie, X.; Li, D.; Gong, Y.; Cao, M.; Bai, Y.; Dong, H.; Liu, G.; et al. J. Colloid Interface Sci. 2023, 636, 317. doi: 10.1016/j.jcis.2023.01.033
-
[146]
(146) Chen, Y.; Qiu, L. L.; Ma, X. Y.; Chu, Z. D.; Zhuang, Z. S.; Dong, L. K.; Du, P. F.; Xiong, J. Solid State Ionics 2020, 347, 115253. doi: 10.1016/j.ssi.2020.115253(146) Chen, Y.; Qiu, L. L.; Ma, X. Y.; Chu, Z. D.; Zhuang, Z. S.; Dong, L. K.; Du, P. F.; Xiong, J. Solid State Ionics 2020, 347, 115253. doi: 10.1016/j.ssi.2020.115253
-
[147]
(147) Gong, W. Z.; Wei, S. Y.; Ruan, S. L.; Shen, C. Y. Mater. Lett. 2019, 244, 126. doi: 10.1016/j.matlet.2019.02.009(147) Gong, W. Z.; Wei, S. Y.; Ruan, S. L.; Shen, C. Y. Mater. Lett. 2019, 244, 126. doi: 10.1016/j.matlet.2019.02.009
-
[148]
(148) Zhao, H. J.; Deng, N. P.; Wang, G.; Ren, H. R.; Kang, W. M.; Cheng, B. W. Chem. Eng. J. 2021, 404, 126542. doi: 10.1016/j.cej.2020.126542(148) Zhao, H. J.; Deng, N. P.; Wang, G.; Ren, H. R.; Kang, W. M.; Cheng, B. W. Chem. Eng. J. 2021, 404, 126542. doi: 10.1016/j.cej.2020.126542
-
[149]
(149) Li, H.; Feng, T.; Liang, Y.; Wu, M. Chin. Chem. Lett. 2023, 34 (12), 108350. doi: 10.1016/j.cclet.2023.108350(149) Li, H.; Feng, T.; Liang, Y.; Wu, M. Chin. Chem. Lett. 2023, 34 (12), 108350. doi: 10.1016/j.cclet.2023.108350
-
[150]
(150) Jiang, X. Y.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. J. Mater. Chem. A 2017, 5 (44), 23238. doi: 10.1039/c7ta08063h(150) Jiang, X. Y.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. J. Mater. Chem. A 2017, 5 (44), 23238. doi: 10.1039/c7ta08063h
-
[151]
(151) Wei, Z. Z.; Gu, J. Y.; Zhang, F. R.; Pan, Z. J.; Zhao, Y. ACS Appl. Polym. Mater. 2020, 2 (5), 1989. doi: 10.1021/acsapm.0c00164(151) Wei, Z. Z.; Gu, J. Y.; Zhang, F. R.; Pan, Z. J.; Zhao, Y. ACS Appl. Polym. Mater. 2020, 2 (5), 1989. doi: 10.1021/acsapm.0c00164
-
[152]
(152) Shao, F.; Kang, G.; Chen, H.; Wang, X.; Shao, Z.; Li, W.; Zheng, G. Preparation of Flame-retardant Lithium-ion Battery Separator by Coaxial Electrospinning. In IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China; 2021. doi: 10.1109/nems51815.2021.9451445(152) Shao, F.; Kang, G.; Chen, H.; Wang, X.; Shao, Z.; Li, W.; Zheng, G. Preparation of Flame-retardant Lithium-ion Battery Separator by Coaxial Electrospinning. In IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Xiamen, China; 2021. doi: 10.1109/nems51815.2021.9451445
-
[153]
(153) Zheng, G.; Zeng, Z.; Shao, Z.; Shen, R.; Li, H.; Jiang, J.; Wang, X.; Li, W.; Liu, Y. Mater. Chem. Phys. 2023, 301, 127647. doi: 10.1016/j.matchemphys.2023.127647(153) Zheng, G.; Zeng, Z.; Shao, Z.; Shen, R.; Li, H.; Jiang, J.; Wang, X.; Li, W.; Liu, Y. Mater. Chem. Phys. 2023, 301, 127647. doi: 10.1016/j.matchemphys.2023.127647
-
[154]
(154) Zeng, Z.; Shao, Z.; Shen, R.; Li, H.; Jiang, J.; Wang, X.; Li, W.; Guo, S.; Liu, Y.; Zheng, G. ACS Appl. Mater. Interfaces 2023, 15 (37), 44259. doi: 10.1021/acsami.3c08757(154) Zeng, Z.; Shao, Z.; Shen, R.; Li, H.; Jiang, J.; Wang, X.; Li, W.; Guo, S.; Liu, Y.; Zheng, G. ACS Appl. Mater. Interfaces 2023, 15 (37), 44259. doi: 10.1021/acsami.3c08757
-
[155]
(155) Liu, Z. F.; Jiang, Y. J.; Hu, Q. M.; Guo, S. T.; Yu, L.; Li, Q.; Liu, Q.; Hu, X. L. Energy Environ. Mater. 2021, 4 (3), 336. doi: 10.1002/eem2.12129(155) Liu, Z. F.; Jiang, Y. J.; Hu, Q. M.; Guo, S. T.; Yu, L.; Li, Q.; Liu, Q.; Hu, X. L. Energy Environ. Mater. 2021, 4 (3), 336. doi: 10.1002/eem2.12129
-
[156]
(156) Gong, W.; Wang, X.; Li, Z.; Gu, J.; Ruan, S.; Shen, C. High Perform. Polym. 2018, 31 (8), 948. doi: 10.1177/0954008318814154(156) Gong, W.; Wang, X.; Li, Z.; Gu, J.; Ruan, S.; Shen, C. High Perform. Polym. 2018, 31 (8), 948. doi: 10.1177/0954008318814154
-
[157]
(157) Liao, H. Y.; Zhang, H. Y.; Qin, G.; Hong, H. Q.; Li, Z. H.; Lin, Y. X.; Li, L. Q. Macromol. Mater. Eng. 2017, 302 (11), 1700241. doi: 10.1002/mame.201700241(157) Liao, H. Y.; Zhang, H. Y.; Qin, G.; Hong, H. Q.; Li, Z. H.; Lin, Y. X.; Li, L. Q. Macromol. Mater. Eng. 2017, 302 (11), 1700241. doi: 10.1002/mame.201700241
-
[158]
(158) Zhai, Y.; Wang, N.; Mao, X.; Si, Y.; Yu, J.; Al-Deyab, S. S.; El-Newehy, M.; Ding, B. J. Mater. Chem. A 2014, 2 (35), 14511. doi: 10.1039/c4ta02151g(158) Zhai, Y.; Wang, N.; Mao, X.; Si, Y.; Yu, J.; Al-Deyab, S. S.; El-Newehy, M.; Ding, B. J. Mater. Chem. A 2014, 2 (35), 14511. doi: 10.1039/c4ta02151g
-
[159]
(159) Jiang, Y. H.; Ding, Y. H.; Zhang, P.; Li, F.; Yang, Z. M. J. Membr. Sci. 2018, 565, 33. doi: 10.1016/j.memsci.2018.08.008(159) Jiang, Y. H.; Ding, Y. H.; Zhang, P.; Li, F.; Yang, Z. M. J. Membr. Sci. 2018, 565, 33. doi: 10.1016/j.memsci.2018.08.008
-
[160]
(160) Liu, Z. F.; Hu, Q. M.; Guo, S. T.; Yu, L.; Hu, X. L. Adv. Mater. 2021, 33 (15), e2008088. doi: 10.1002/adma.202008088(160) Liu, Z. F.; Hu, Q. M.; Guo, S. T.; Yu, L.; Hu, X. L. Adv. Mater. 2021, 33 (15), e2008088. doi: 10.1002/adma.202008088
-
[161]
(161) Li, P.; Liu, Z.; Peng, Y.; Yang, S.; Meng, T.; Hu, Y.; Jiang, Y.; Sun, H.; Li, Q.; Hu, X. Nano Res. 2023, doi: 10.1007/s12274-023-6179-8(161) Li, P.; Liu, Z.; Peng, Y.; Yang, S.; Meng, T.; Hu, Y.; Jiang, Y.; Sun, H.; Li, Q.; Hu, X. Nano Res. 2023, doi: 10.1007/s12274-023-6179-8
-
[162]
(162) Xi, Y. Y.; Zhang, P.; Zhang, H. N.; Wan, Z. H.; Tu, W. M.; Tang, H. L. Int. J. Electrochem. Sci. 2017, 12 (6), 5421. doi: 10.20964/2017.06.69(162) Xi, Y. Y.; Zhang, P.; Zhang, H. N.; Wan, Z. H.; Tu, W. M.; Tang, H. L. Int. J. Electrochem. Sci. 2017, 12 (6), 5421. doi: 10.20964/2017.06.69
-
[163]
(163) Dong, G. Q.; Liu, B. X.; Sun, G. H.; Tian, G. F.; Qi, S. L.; Wu, D. Z. J. Membr. Sci. 2019, 577, 249. doi: 10.1016/j.memsci.2019.02.003(163) Dong, G. Q.; Liu, B. X.; Sun, G. H.; Tian, G. F.; Qi, S. L.; Wu, D. Z. J. Membr. Sci. 2019, 577, 249. doi: 10.1016/j.memsci.2019.02.003
-
[164]
(164) Kong, L. S.; Wang, Y.; Yu, H. S.; Liu, B. X.; Qi, S. L.; Wu, D. Z.; Zhong, W.-H.; Tian, G. F.; Wang, J. ACS Appl. Mater. Interfaces 2019, 11 (3), 2978. doi: 10.1021/acsami.8b17521(164) Kong, L. S.; Wang, Y.; Yu, H. S.; Liu, B. X.; Qi, S. L.; Wu, D. Z.; Zhong, W.-H.; Tian, G. F.; Wang, J. ACS Appl. Mater. Interfaces 2019, 11 (3), 2978. doi: 10.1021/acsami.8b17521
-
[165]
(165) Arifeen, W. U.; Choi, J.; Yoo, K.; Shim, J.; Ko, T. J. Chem. Eng. J. 2021, 417, 128075. doi: 10.1016/j.cej.2020.128075(165) Arifeen, W. U.; Choi, J.; Yoo, K.; Shim, J.; Ko, T. J. Chem. Eng. J. 2021, 417, 128075. doi: 10.1016/j.cej.2020.128075
-
[166]
(166) Huang, F. L.; Liu, W. T.; Li, P. Y.; Ning, J. X.; Wei, Q. F. Materials 2016, 9 (2), 75. doi: 10.3390/ma9020075(166) Huang, F. L.; Liu, W. T.; Li, P. Y.; Ning, J. X.; Wei, Q. F. Materials 2016, 9 (2), 75. doi: 10.3390/ma9020075
-
[167]
(167) Chong, Y. L.; Zhao, D. D.; Wang, B.; Feng, L.; Li, S. J.; Shao, L. X.; Tong, X.; Du, X.; Cheng, H.; Zhuang, J. L. Chem. Rec. 2022, 22 (10), e202200142. doi: 10.1002/tcr.202200142(167) Chong, Y. L.; Zhao, D. D.; Wang, B.; Feng, L.; Li, S. J.; Shao, L. X.; Tong, X.; Du, X.; Cheng, H.; Zhuang, J. L. Chem. Rec. 2022, 22 (10), e202200142. doi: 10.1002/tcr.202200142
-
[168]
(168) Cong, C.; Ma, H. Small 2023, 19 (15), 2207547. doi: 10.1002/smll.202207547(168) Cong, C.; Ma, H. Small 2023, 19 (15), 2207547. doi: 10.1002/smll.202207547
-
[169]
(169) Fu, Q. S.; Zhang, W.; Muhammad, I. P.; Chen, X. D.; Zeng, Y.; Wang, B. T.; Zhang, S. Y. Microporous Mesoporous Mater. 2021, 311, 110724. doi: 10.1016/j.micromeso.2020.110724(169) Fu, Q. S.; Zhang, W.; Muhammad, I. P.; Chen, X. D.; Zeng, Y.; Wang, B. T.; Zhang, S. Y. Microporous Mesoporous Mater. 2021, 311, 110724. doi: 10.1016/j.micromeso.2020.110724
-
[170]
(170) Zhang, C.; Shen, L.; Shen, J.; Liu, F.; Chen, G.; Tao, R.; Ma, S.; Peng, Y.; Lu, Y. Adv. Mater. 2019, 31 (21), 1808338. doi: 10.1002/adma.201808338(170) Zhang, C.; Shen, L.; Shen, J.; Liu, F.; Chen, G.; Tao, R.; Ma, S.; Peng, Y.; Lu, Y. Adv. Mater. 2019, 31 (21), 1808338. doi: 10.1002/adma.201808338
-
[171]
(171) Guo, M.; Dong, S.; Xiong, J.; Jin, X.; Wan, P.; Lu, S.; Zhang, Y.; Xu, J.; Fan, H. Mater. Today Chem. 2023, 30, 101552. doi: 10.1016/j.mtchem.2023.101552(171) Guo, M.; Dong, S.; Xiong, J.; Jin, X.; Wan, P.; Lu, S.; Zhang, Y.; Xu, J.; Fan, H. Mater. Today Chem. 2023, 30, 101552. doi: 10.1016/j.mtchem.2023.101552
-
[172]
(172) Nagappan, S.; Duraivel, M.; Elayappan, V.; Muthuchamy, N.; Mohan, B.; Dhakshinamoorthy, A.; Prabakar, K.; Lee, J.-M.; Park, K. H. Energy Technol. 2023, 11 (3), 2201200. doi: 10.1002/ente.202201200(172) Nagappan, S.; Duraivel, M.; Elayappan, V.; Muthuchamy, N.; Mohan, B.; Dhakshinamoorthy, A.; Prabakar, K.; Lee, J.-M.; Park, K. H. Energy Technol. 2023, 11 (3), 2201200. doi: 10.1002/ente.202201200
-
[173]
(173) Akhmetov, N.; Manakhov, A.; Al-Qasim, A. S. Electronics 2023, 12 (5), 1152. doi: 10.3390/electronics12051152(173) Akhmetov, N.; Manakhov, A.; Al-Qasim, A. S. Electronics 2023, 12 (5), 1152. doi: 10.3390/electronics12051152
-
[174]
(174) Mori, R. J. Solid State Electrochem. 2023, 27 (4), 813. doi: 10.1007/s10008-023-05387-z(174) Mori, R. J. Solid State Electrochem. 2023, 27 (4), 813. doi: 10.1007/s10008-023-05387-z
-
[175]
(175) Kalluri, S.; Seng, K. H.; Guo, Z.; Liu, H.; Dou, S. RSC Adv. 2013, 3 (48), 25576. doi: 10.1039/c3ra45414b(175) Kalluri, S.; Seng, K. H.; Guo, Z.; Liu, H.; Dou, S. RSC Adv. 2013, 3 (48), 25576. doi: 10.1039/c3ra45414b
-
[176]
(176) Jayaraman, S.; Aravindan, V.; Kumar, P. S.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. Chem. Commun. 2013, 49 (59), 6677. doi: 10.1039/c3cc43874k(176) Jayaraman, S.; Aravindan, V.; Kumar, P. S.; Ling, W. C.; Ramakrishna, S.; Madhavi, S. Chem. Commun. 2013, 49 (59), 6677. doi: 10.1039/c3cc43874k
-
[177]
(177) Zhan, S. H.; Li, Y.; Yu, H. B. J. Dispersion Sci. Technol. 2008, 29 (6), 823. doi: 10.1080/01932690701781469(177) Zhan, S. H.; Li, Y.; Yu, H. B. J. Dispersion Sci. Technol. 2008, 29 (6), 823. doi: 10.1080/01932690701781469
-
[178]
(178) Gu, Y. X.; Chen, D. R.; Jiao, X. L.; Liu, F. F. J. Mater. Chem. 2007, 17 (18), 1769. doi: 10.1039/b614205b(178) Gu, Y. X.; Chen, D. R.; Jiao, X. L.; Liu, F. F. J. Mater. Chem. 2007, 17 (18), 1769. doi: 10.1039/b614205b
-
[179]
(179) Shao, D. Q.; Wang, J. X.; Dong, X. T.; Yu, W. S.; Liu, G. X.; Zhang, F. F.; Wang, L. M. J. Mater. Sci.: Mater. Electron. 2013, 24 (12), 4718. doi: 10.1007/s10854-013-1465-y(179) Shao, D. Q.; Wang, J. X.; Dong, X. T.; Yu, W. S.; Liu, G. X.; Zhang, F. F.; Wang, L. M. J. Mater. Sci.: Mater. Electron. 2013, 24 (12), 4718. doi: 10.1007/s10854-013-1465-y
-
[180]
(180) Wei, B. B.; Wu, Y. B.; Yu, F. Y.; Zhou, Y. N. Int. J. Miner. Metall. Mater. 2016, 23 (4), 474. doi: 10.1007/s12613-016-1258-4(180) Wei, B. B.; Wu, Y. B.; Yu, F. Y.; Zhou, Y. N. Int. J. Miner. Metall. Mater. 2016, 23 (4), 474. doi: 10.1007/s12613-016-1258-4
-
[181]
(181) Qu, Z.; Zhang, X.; Xiao, R.; Sun, Z.; Li, F. Acta Phys. -Chim. Sin. 2023, 39 (8), 2301019. [屈卓研, 张笑银, 肖茹, 孙振华, 李峰. 物理化学学报, 2023, 39 (8), 2301019.] doi: 10.3866/PKU.WHXB202301019
-
[182]
(182) Wang, J.; Cao, G.; Duan, R.; Li, X.; Li, X. Acta Phys. -Chim. Sin. 2023, 39 (5), 2212005. [王晶晶, 曹贵强, 段瑞贤, 李向阳, 李喜飞. 物理化学学报, 2023, 39 (5), 2212005.] doi: 10.3866/PKU.WHXB202212005
-
[183]
(183) Fan, X.; Liu, Y.; Tan, J.; Yang, S.; Zhang, X.; Liu, B.; Cheng, H.; Sun, Z.; Li, F. J. Mater. Chem. A 2022, 10 (14), 7653. doi: 10.1039/d1ta10444f(183) Fan, X.; Liu, Y.; Tan, J.; Yang, S.; Zhang, X.; Liu, B.; Cheng, H.; Sun, Z.; Li, F. J. Mater. Chem. A 2022, 10 (14), 7653. doi: 10.1039/d1ta10444f
-
[184]
(184) Zhang, X.; Zhu, L.; Gao, Z.; Zhang, L.; Zhang, Z.; Zhang, L.; Wang, Y. Mater. Today Commun. 2021, 28, 102666. doi: 10.1016/j.mtcomm.2021.102666(184) Zhang, X.; Zhu, L.; Gao, Z.; Zhang, L.; Zhang, Z.; Zhang, L.; Wang, Y. Mater. Today Commun. 2021, 28, 102666. doi: 10.1016/j.mtcomm.2021.102666
-
[185]
(185) Wei, C.; Han, Y.; Liu, H.; Gan, R.; Li, Q.; Wang, Y.; Hu, P.; Ma, C.; Shi, J. Carbon 2021, 184, 1. doi: 10.1016/j.carbon.2021.08.004(185) Wei, C.; Han, Y.; Liu, H.; Gan, R.; Li, Q.; Wang, Y.; Hu, P.; Ma, C.; Shi, J. Carbon 2021, 184, 1. doi: 10.1016/j.carbon.2021.08.004
-
[186]
(186) Wei, C.; Liu, H.; Gan, R.; Ma, W.; Wang, Y.; Han, Y.; Song, Y.; Ma, C.; Shi, J. Colloids Surf. A 2022, 648, 129179. doi: 10.1016/j.colsurfa.2022.129179(186) Wei, C.; Liu, H.; Gan, R.; Ma, W.; Wang, Y.; Han, Y.; Song, Y.; Ma, C.; Shi, J. Colloids Surf. A 2022, 648, 129179. doi: 10.1016/j.colsurfa.2022.129179
-
[187]
(187) Huang, X. Y.; Liu, J.; Huang, Z. X.; Ke, X.; Liu, L. Y.; Wang, N. G.; Liu, J. P.; Guo, Z. P.; Yang, Y.; Shi, Z. C. Electrochim. Acta 2020, 333, 135493. doi: 10.1016/j.electacta.2019.135493(187) Huang, X. Y.; Liu, J.; Huang, Z. X.; Ke, X.; Liu, L. Y.; Wang, N. G.; Liu, J. P.; Guo, Z. P.; Yang, Y.; Shi, Z. C. Electrochim. Acta 2020, 333, 135493. doi: 10.1016/j.electacta.2019.135493
-
[188]
(188) Ding, P.; Yan, T.; Li, K.; Wu, Q.; Zhu, X.; Chen, H.; Ju, A. J. Alloy. Compd. 2022, 928, 167056. doi: 10.1016/j.jallcom.2022.167056(188) Ding, P.; Yan, T.; Li, K.; Wu, Q.; Zhu, X.; Chen, H.; Ju, A. J. Alloy. Compd. 2022, 928, 167056. doi: 10.1016/j.jallcom.2022.167056
-
[189]
(189) Wang, X. L.; Chen, J.; Jin, B.; Jiang, Q.; Jin, E. M.; Jeong, S. M. J. Electroanal. Chem. 2020, 878, 114564. doi: 10.1016/j.jelechem.2020.114564(189) Wang, X. L.; Chen, J.; Jin, B.; Jiang, Q.; Jin, E. M.; Jeong, S. M. J. Electroanal. Chem. 2020, 878, 114564. doi: 10.1016/j.jelechem.2020.114564
-
[190]
(190) Wu, Y.; Gao, M.; Li, X.; Liu, Y.; Pan, H. J. Alloy. Compd. 2014, 608, 220. doi: 10.1016/j.jallcom.2014.04.073(190) Wu, Y.; Gao, M.; Li, X.; Liu, Y.; Pan, H. J. Alloy. Compd. 2014, 608, 220. doi: 10.1016/j.jallcom.2014.04.073
-
[191]
(191) Liu, L. H.; Mo, J. S.; Li, J. R.; Liu, J. X.; Yan, H. J.; Lyu, J.; Jiang, B.; Chu, L. H.; Li, M. C. J. Energy Chem. 2020, 48, 334. doi: 10.1016/j.jechem.2020.02.033(191) Liu, L. H.; Mo, J. S.; Li, J. R.; Liu, J. X.; Yan, H. J.; Lyu, J.; Jiang, B.; Chu, L. H.; Li, M. C. J. Energy Chem. 2020, 48, 334. doi: 10.1016/j.jechem.2020.02.033
-
[192]
(192) Zhang, D. C.; Xu, X. J.; Ji, S. M.; Wang, Z. S.; Liu, Z. B.; Shen, J. D.; Hu, R. Z.; Liu, J.; Zhu, M. ACS Appl. Mater. Interfaces 2020, 12 (19), 21586. doi: 10.1021/acsami.0c02291(192) Zhang, D. C.; Xu, X. J.; Ji, S. M.; Wang, Z. S.; Liu, Z. B.; Shen, J. D.; Hu, R. Z.; Liu, J.; Zhu, M. ACS Appl. Mater. Interfaces 2020, 12 (19), 21586. doi: 10.1021/acsami.0c02291
-
[193]
(193) Liang, Y.; Liu, Y.; Chen, D.; Dong, L.; Guang, Z.; Liu, J.; Yuan, B.; Yang, M.; Dong, Y.; Li, Q.; et al. Mater. Today Energy 2021, 20, 100694. doi: 10.1016/j.mtener.2021.100694(193) Liang, Y.; Liu, Y.; Chen, D.; Dong, L.; Guang, Z.; Liu, J.; Yuan, B.; Yang, M.; Dong, Y.; Li, Q.; et al. Mater. Today Energy 2021, 20, 100694. doi: 10.1016/j.mtener.2021.100694
-
[194]
(194) Li, Z.; Fu, J.; Zhou, X.; Gui, S.; Wei, L.; Yang, H.; Li, H.; Guo, X. Adv. Sci. 2023, 10 (10), 2201718. doi: 10.1002/advs.202201718(194) Li, Z.; Fu, J.; Zhou, X.; Gui, S.; Wei, L.; Yang, H.; Li, H.; Guo, X. Adv. Sci. 2023, 10 (10), 2201718. doi: 10.1002/advs.202201718
-
[195]
(195) Cao, C.; Zhong, Y.; Shao, Z. Chin. J. Chem. 2023, 41 (9), 1119. doi: 10.1002/cjoc.202200588(195) Cao, C.; Zhong, Y.; Shao, Z. Chin. J. Chem. 2023, 41 (9), 1119. doi: 10.1002/cjoc.202200588
-
[196]
(196) Yang, K.; Zhao, L.; An, X.; Chen, L.; Ma, J.; Mi, J.; He, Y. B. Angew. Chem., Int. Ed. 2023, 62 (24), e202302586. doi: 10.1002/anie.202302586(196) Yang, K.; Zhao, L.; An, X.; Chen, L.; Ma, J.; Mi, J.; He, Y. B. Angew. Chem., Int. Ed. 2023, 62 (24), e202302586. doi: 10.1002/anie.202302586
-
[197]
(197) Zhu, M.; Wu, J. X.; Wang, Y.; Song, M. M.; Long, L.; Siyal, S. H.; Yang, X. P.; Sui, G. J. Energy Chem. 2019, 37, 126. doi: 10.1016/j.jechem.2018.12.013(197) Zhu, M.; Wu, J. X.; Wang, Y.; Song, M. M.; Long, L.; Siyal, S. H.; Yang, X. P.; Sui, G. J. Energy Chem. 2019, 37, 126. doi: 10.1016/j.jechem.2018.12.013
-
[198]
(198) Ren, W. H.; Ding, C. F.; Fu, X. W.; Huang, Y. Energy Storage Mater. 2021, 34, 515. doi: 10.1016/j.ensm.2020.10.018(198) Ren, W. H.; Ding, C. F.; Fu, X. W.; Huang, Y. Energy Storage Mater. 2021, 34, 515. doi: 10.1016/j.ensm.2020.10.018
-
[199]
(199) Zhou, L.; Cao, Q.; Jing, B.; Wang, X.; Tang, X.; Wu, N. J. Power Sources 2014, 263, 118. doi: 10.1016/j.jpowsour.2014.03.140(199) Zhou, L.; Cao, Q.; Jing, B.; Wang, X.; Tang, X.; Wu, N. J. Power Sources 2014, 263, 118. doi: 10.1016/j.jpowsour.2014.03.140
-
[200]
(200) Zhao, H. J.; Deng, N. P.; Kang, W. M.; Li, Z. J.; Wang, G.; Cheng, B. W. Energy Storage Mater. 2020, 26, 334. doi: 10.1016/j.ensm.2019.11.005(200) Zhao, H. J.; Deng, N. P.; Kang, W. M.; Li, Z. J.; Wang, G.; Cheng, B. W. Energy Storage Mater. 2020, 26, 334. doi: 10.1016/j.ensm.2019.11.005
-
[201]
(201) Bi, H. T.; Sui, G.; Yang, X. P. J. Power Sources 2014, 267, 309. doi: 10.1016/j.jpowsour.2014.05.030(201) Bi, H. T.; Sui, G.; Yang, X. P. J. Power Sources 2014, 267, 309. doi: 10.1016/j.jpowsour.2014.05.030
-
[202]
(202) Zhang, Z. Z.; Sui, G.; Bi, H. T.; Yang, X. P. J. Membr. Sci. 2015, 492, 77. doi: 10.1016/j.memsci.2015.05.040(202) Zhang, Z. Z.; Sui, G.; Bi, H. T.; Yang, X. P. J. Membr. Sci. 2015, 492, 77. doi: 10.1016/j.memsci.2015.05.040
-
[203]
(203) Barbosa, J. C.; Correia, D. M.; Gonçalves, R.; Bermudez, V. d. Z.; Silva, M. M.; Lanceros-Mendez, S.; Costa, C. M. J. Colloid Interface Sci. 2020, 582 (Pt A), 376. doi: 10.1016/j.jcis.2020.08.046(203) Barbosa, J. C.; Correia, D. M.; Gonçalves, R.; Bermudez, V. d. Z.; Silva, M. M.; Lanceros-Mendez, S.; Costa, C. M. J. Colloid Interface Sci. 2020, 582 (Pt A), 376. doi: 10.1016/j.jcis.2020.08.046
-
[204]
(204) Song, X.; Qi, W.; Zhang, H.; Wang, G. Solid State Ionics 2020, 347, 115266. doi: 10.1016/j.ssi.2020.115266(204) Song, X.; Qi, W.; Zhang, H.; Wang, G. Solid State Ionics 2020, 347, 115266. doi: 10.1016/j.ssi.2020.115266
-
[205]
(205) Liu, X.; Ren, Y.; Zhang, L.; Zhang, S. Front. Chem. 2019, 7, 421. doi: 10.3389/fchem.2019.00421(205) Liu, X.; Ren, Y.; Zhang, L.; Zhang, S. Front. Chem. 2019, 7, 421. doi: 10.3389/fchem.2019.00421
-
[206]
(206) Luo, X. Y.; Liao, Y. H.; Xie, H. L.; Zhu, Y. M.; Huang, Q. M.; Li, W. S. Electrochim. Acta 2016, 220, 47. doi: 10.1016/j.electacta.2016.09.147(206) Luo, X. Y.; Liao, Y. H.; Xie, H. L.; Zhu, Y. M.; Huang, Q. M.; Li, W. S. Electrochim. Acta 2016, 220, 47. doi: 10.1016/j.electacta.2016.09.147
-
[207]
(207) Jia, H.; Onishi, H.; von Aspern, N.; Rodehorst, U.; Rudolf, K.; Billmann, B.; Wagner, R.; Winter, M.; Cekic-Laskovic, I. J. Power Sources 2018, 397, 343. doi: 10.1016/j.jpowsour.2018.07.039(207) Jia, H.; Onishi, H.; von Aspern, N.; Rodehorst, U.; Rudolf, K.; Billmann, B.; Wagner, R.; Winter, M.; Cekic-Laskovic, I. J. Power Sources 2018, 397, 343. doi: 10.1016/j.jpowsour.2018.07.039
-
[208]
(208) Huang, J. H.; Liao, Y. H.; Li, G. J.; Xu, N.; Xu, M. Q.; Li, W. S. Electrochim. Acta 2019, 299, 45. doi: 10.1016/j.electacta.2018.12.168(208) Huang, J. H.; Liao, Y. H.; Li, G. J.; Xu, N.; Xu, M. Q.; Li, W. S. Electrochim. Acta 2019, 299, 45. doi: 10.1016/j.electacta.2018.12.168
-
[209]
(209) Wang, L.; Yan, J. W.; Zhang, R.; Li, Y. F.; Shen, W. Z.; Zhang, J. L.; Zhong, M.; Guo, S. W. ACS Appl. Mater. Interfaces 2021, 13 (8), 9875. doi: 10.1021/acsami.0c20854(209) Wang, L.; Yan, J. W.; Zhang, R.; Li, Y. F.; Shen, W. Z.; Zhang, J. L.; Zhong, M.; Guo, S. W. ACS Appl. Mater. Interfaces 2021, 13 (8), 9875. doi: 10.1021/acsami.0c20854
-
[210]
(210) Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; et al. Nat. Nanotechnol. 2019, 14 (7), 705. doi: 10.1038/s41565-019-0465-3(210) Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J.; et al. Nat. Nanotechnol. 2019, 14 (7), 705. doi: 10.1038/s41565-019-0465-3
-
[211]
(211) Baskoro, F.; Wong, H. Q.; Yen, H.-J. ACS Appl. Energy Mater. 2019, 2 (6), 3937. doi: 10.1021/acsaem.9b00295(211) Baskoro, F.; Wong, H. Q.; Yen, H.-J. ACS Appl. Energy Mater. 2019, 2 (6), 3937. doi: 10.1021/acsaem.9b00295
-
[212]
(212) Li, R. G.; Wu, D. B.; Yu, L.; Mei, Y. N.; Wang, L. B.; Li, H.; Hu, X. L. Adv. Eng. Mater. 2019, 21 (7), 1900055. doi: 10.1002/adem.201900055(212) Li, R. G.; Wu, D. B.; Yu, L.; Mei, Y. N.; Wang, L. B.; Li, H.; Hu, X. L. Adv. Eng. Mater. 2019, 21 (7), 1900055. doi: 10.1002/adem.201900055
-
[213]
(213) Guo, Z. M.; Pang, Y. P.; Xia, S. X.; Xu, F.; Yang, J. H.; Sun, L. X.; Zheng, S. Y. Adv. Sci. 2021, 8 (16), 2100899. doi: 10.1002/advs.202100899(213) Guo, Z. M.; Pang, Y. P.; Xia, S. X.; Xu, F.; Yang, J. H.; Sun, L. X.; Zheng, S. Y. Adv. Sci. 2021, 8 (16), 2100899. doi: 10.1002/advs.202100899
-
[214]
(214) Huang, H. H.; He, C. L.; Wang, H. S.; Mo, X. M. J. Biomed. Mater. Res. Part A 2009, 90 (4), 1243. doi: 10.1002/jbm.a.32543(214) Huang, H. H.; He, C. L.; Wang, H. S.; Mo, X. M. J. Biomed. Mater. Res. Part A 2009, 90 (4), 1243. doi: 10.1002/jbm.a.32543
-
[215]
(215) Bhattarai, R. S.; Bachu, R. D.; Boddu, S. H. S.; Bhaduri, S. Pharmaceutics 2018, 11 (1), 5. doi: 10.3390/pharmaceutics11010005(215) Bhattarai, R. S.; Bachu, R. D.; Boddu, S. H. S.; Bhaduri, S. Pharmaceutics 2018, 11 (1), 5. doi: 10.3390/pharmaceutics11010005
-
[216]
(216) Ghafoor, B.; Aleem, A.; Ali, M. N.; Mir, M. J. Drug Delivery Sci. Technol. 2018, 48, 82. doi: 10.1016/j.jddst.2018.09.005(216) Ghafoor, B.; Aleem, A.; Ali, M. N.; Mir, M. J. Drug Delivery Sci. Technol. 2018, 48, 82. doi: 10.1016/j.jddst.2018.09.005
-
[217]
(217) Halaui, R.; Zussman, E.; Khalfin, R.; Semiat, R.; Cohen, Y. Polym. Adv. Technol. 2017, 28 (5), 570. doi: 10.1002/pat.3794(217) Halaui, R.; Zussman, E.; Khalfin, R.; Semiat, R.; Cohen, Y. Polym. Adv. Technol. 2017, 28 (5), 570. doi: 10.1002/pat.3794
-
[218]
(218) He, T. S.; Su, Q. Y.; Yildiz, Z.; Cai, K. D.; Wang, Y. J. Electrochim. Acta 2016, 222, 1120. doi: 10.1016/j.electacta.2016.11.083(218) He, T. S.; Su, Q. Y.; Yildiz, Z.; Cai, K. D.; Wang, Y. J. Electrochim. Acta 2016, 222, 1120. doi: 10.1016/j.electacta.2016.11.083
-
[219]
(219) Zhu, Q.; Wang, M.; Nan, B.; Shi, H. H.; Zhang, X. M.; Deng, Y. H.; Wang, L. P.; Chen, Q. Q.; Lu, Z. G. J. Power Sources 2017, 362, 147. doi: 10.1016/j.jpowsour.2017.07.004(219) Zhu, Q.; Wang, M.; Nan, B.; Shi, H. H.; Zhang, X. M.; Deng, Y. H.; Wang, L. P.; Chen, Q. Q.; Lu, Z. G. J. Power Sources 2017, 362, 147. doi: 10.1016/j.jpowsour.2017.07.004
-
[220]
(220) Yadav, S.; Kok, M. D. R.; Forner-Cuenca, A.; Tenny, K. M.; Chiang, Y.-M.; Brushett, F. R.; Jervis, R.; Shearing, P. R.; Brett, D.; Roberts, E. P. L.; et al. J. Energy Storage 2021, 33, 102079. doi: 10.1016/j.est.2020.102079(220) Yadav, S.; Kok, M. D. R.; Forner-Cuenca, A.; Tenny, K. M.; Chiang, Y.-M.; Brushett, F. R.; Jervis, R.; Shearing, P. R.; Brett, D.; Roberts, E. P. L.; et al. J. Energy Storage 2021, 33, 102079. doi: 10.1016/j.est.2020.102079
-
[221]
(221) Li, D. M.; Li, H. T.; Zheng, S. M.; Gao, N.; Li, S.; Liu, J.; Hou, L.; Liu, J.; Miao, B.; Bai, J.; et al. J. Colloid Interface Sci. 2021, 607 (Pt 1), 655. doi: 10.1016/j.jcis.2021.08.171(221) Li, D. M.; Li, H. T.; Zheng, S. M.; Gao, N.; Li, S.; Liu, J.; Hou, L.; Liu, J.; Miao, B.; Bai, J.; et al. J. Colloid Interface Sci. 2021, 607 (Pt 1), 655. doi: 10.1016/j.jcis.2021.08.171
-
[222]
(222) Lang, L. M.; Wu, D.; Xu, Z. Chem. -Eur. J. 2012, 18 (34), 10661. doi: 10.1002/chem.201200378(222) Lang, L. M.; Wu, D.; Xu, Z. Chem. -Eur. J. 2012, 18 (34), 10661. doi: 10.1002/chem.201200378
-
[223]
(223) Vempati, S.; Ranjith, K. S.; Topuz, F.; Biyikli, N.; Uyar, T. ACS Appl. Nano Mater. 2020, 3 (7), 6186. doi: 10.1021/acsanm.0c01120(223) Vempati, S.; Ranjith, K. S.; Topuz, F.; Biyikli, N.; Uyar, T. ACS Appl. Nano Mater. 2020, 3 (7), 6186. doi: 10.1021/acsanm.0c01120
-
[224]
(224) Wang, Z.; Ni, J.; Li, L.; Lu, J. Cell Rep. Phys. Sci. 2020, 1 (6), 100078. doi: 10.1016/j.xcrp.2020.100078(224) Wang, Z.; Ni, J.; Li, L.; Lu, J. Cell Rep. Phys. Sci. 2020, 1 (6), 100078. doi: 10.1016/j.xcrp.2020.100078
-
[225]
(225) Yu, M.; Dong, R.-H.; Yan, X.; Yu, G.-F.; You, M.-H.; Ning, X.; Long, Y.-Z. Macromol. Mater. Eng. 2017, 302 (7), 1700002. doi: 10.1002/mame.201700002(225) Yu, M.; Dong, R.-H.; Yan, X.; Yu, G.-F.; You, M.-H.; Ning, X.; Long, Y.-Z. Macromol. Mater. Eng. 2017, 302 (7), 1700002. doi: 10.1002/mame.201700002
-
[1]
计量
- PDF下载量: 3
- 文章访问数: 319
- HTML全文浏览量: 24