Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network
- Corresponding author: Haolin Zhan, hlzhan@hfut.edu.cn
 
	            Citation:
	            
		            Haolin Zhan, Qiyuan Fang, Jiawei Liu, Xiaoqi Shi, Xinyu Chen, Yuqing Huang, Zhong Chen. Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network[J]. Acta Physico-Chimica Sinica,
							;2025, 41(2): 231004.
						
							doi:
								10.3866/PKU.WHXB202310045
						
					
				
					
				
	        
	                
				Theillet, F. X. Chem. Rev. 2022, 122 (10), 9497. doi: 10.1021/acs.chemrev.1c00937
												 doi: 10.1021/acs.chemrev.1c00937
											
										
				Chen, K.; Zornes, A.; Nguyen, V.; Wang, B.; Gan, Z. H.; Crossley, S. P.; White, J. L. J. Am. Chem. Soc. 2022, 144 (37), 16916. doi: 10.1021/jacs.2c05332
												 doi: 10.1021/jacs.2c05332
											
										
				Xin, J. X.; Wei, D. X.; Ren, Y.; Wang, J. L.; Yang, G.; Zhang, H.; Li, J.; Fu, C.; Yao, Y. F. Magn. Reson. Med. 2022,  89 (5), 1728. doi: 10.1002/mrm.29562
												 doi: 10.1002/mrm.29562
											
										
				Zhan, H. L.; Ji, L. F.; Cao, S. H.; Feng, Y.; Jiang, Y. X.; Huang, Y. Q.; Sun, S. G.; Chen, Z. Chin. J. Catal. 2023,  53, 171. doi: 10.1016/S1872-2067(23)64526-7
												 doi: 10.1016/S1872-2067(23)64526-7
											
										
				Zhan, H. L.; Gao, C. Y.; Huang, C. D.; Lin, X. Q.; Huang, Y. Q.; Chen, Z. Anal. Chim. Acta 2023,  1277, 341682. doi: 10.1016/j.aca.2023.341682
												 doi: 10.1016/j.aca.2023.341682
											
										
				Zhan, H. L.; Hao, M. Y.; Feng, Y.; Cao, S. H.; Ni, Z. K.; Huang, Y. Q.; Chen, Z. J. Phys. Chem. Lett. 2021, 12 (3), 1073. doi: 10.1021/acs.jpclett.0c03549
												 doi: 10.1021/acs.jpclett.0c03549
											
										
				Xu, J.; Deng, F. Acta Phys. -Chim. Sin. 2020,  36 (4), 1912074.
												 doi: 10.3866/PKU.WHXB201912074
											
										
				Hu, R.; Wei, L. Y.; Xian, J. L.; Fang, G. Y.; Wu, Z. A.; Fan, M.; Guo, J. Y.; Li, Q. X.; Liu, K. S.; Jiang, H. Y.; et al. Acta Phys. -Chim. Sin. 2023,  39 (9), 2212025.
												 doi: 10.3866/PKU.WHXB202212025
											
										
				He, Z. J.; Huang, M.; Lin, T. J.; Zhong, L. S. Acta Phys. -Chim. Sin. 2023,  39 (9), 2212060.
												 doi: 10.3866/PKU.WHXB202212060
											
										
				Gan, Z. H.; Hung, I.; Wang, X. L.; Paulino, J.; Wu, G.; Litvak, I. M.; Gor'kov, P. L.; Brey, W. W.; Lendi, P.; Schiano, J. L.; et al. J. Magn. Reson. 2017,  284, 125. doi: 10.1016/j.jmr.2017.08.007
												 doi: 10.1016/j.jmr.2017.08.007
											
										
				Chen, K. Z.; Horstmeier, S.; Nguyen, V. T.; Wang, B.; Crossley, S. P.; Pham, T.; Gan, Z. H.; Hung, I.; White, J. L. J. Am. Chem. Soc. 2020,  142 (16), 7514. doi: 10.1021/jacs.0c00590
												 doi: 10.1021/jacs.0c00590
											
										
				Kovacs, H.; Moskau, D.; Spraul, M. Prog. Nucl. Magn. Reson. Spectrosc. 2005,  46 (2–3), 131. doi: 10.1016/j.pnmrs.2005.03.001
												 doi: 10.1016/j.pnmrs.2005.03.001
											
										
				Zhang, R. C.; Mroue, K. H.; Ramamoorthy, A. J. Magn. Reson. 2016,  266, 59. doi: 10.1016/j.jmr.2016.03.006
												 doi: 10.1016/j.jmr.2016.03.006
											
										
				Zhou, Y.; van Zijl, P. C. M.; Xu, X.; Xu, J. D.; Li, Y. G.; Chen, L.; Yadav, N. N. Proc. Natl. Acad. Sci. U. S. A. 2020,  117 (6), 3144. doi: 10.1073/pnas.1909921117
												 doi: 10.1073/pnas.1909921117
											
										
				Sonnefeld, A.; Razanahoera, A.; Pelupessy, P.; Bodenhausen, G.; Sheberstov, K. Sci. Adv. 2022,  8, eade2113. doi: 10.1126/sciadv.ade2113
												 doi: 10.1126/sciadv.ade2113
											
										
				Pang, Z. F.; Xi, G. H.; Gao, L.; Cao, W. C.; Yin, J. L.; Kong, X. Q. Acta Phys. -Chim. Sin. 2020,  36 (4), 1906018.
												 doi: 10.3866/PKU.WHXB201906018
											
										
				Elliott, S. J.; Stern, Q.; Ceillier, M.; El Darai, T.; Cousin, S. F.; Cala, O.; Jannin, S. Prog. Nucl. Magn. Reson. Spectrosc. 2021,  126–127, 59. doi: 10.1016/j.pnmrs.2021.04.002
												 doi: 10.1016/j.pnmrs.2021.04.002
											
										
				Kharbanda, Y.; Urbańczyk, M.; Zhivonitko, V. V.; Mailhiot, S.; Kettunen, M. I.; Telkki, V.-V. Angew. Chem. Int. Ed. 2022,  61 (28), e202203957. doi: 10.1002/anie.202203957
												 doi: 10.1002/anie.202203957
											
										
				Jaroszewicz, M. J.; Liu, M.; Kim, J.; Zhang, G.; Kim, Y.; Hilty, C.; Frydman, L. Nat. Commun. 2022, 13 (1), 833. doi: 10.1038/s41467-022-28304-w
												 doi: 10.1038/s41467-022-28304-w
											
										
				Szekely, O.; Olsen, G. L.; Novakovic, M.; Rosenzweig, R.; Frydman, L. J. Am. Chem. Soc. 2020, 142 (20), 9267. doi: 10.1021/jacs.0c00807
												 doi: 10.1021/jacs.0c00807
											
										
				Marshall, H.; Stewart, N. J.; Chan, H. F.; Rao, M.; Norquay, G.; Wild, J. M. Prog. Nucl. Magn. Reson. Spectrosc. 2021,  122, 42. doi: 10.1016/j.pnmrs.2020.11.002
												 doi: 10.1016/j.pnmrs.2020.11.002
											
										
				Li, H. D.; Zhao, X. C.; Wang, Y. J.; Lou, X.; Chen, S. Z.; Deng, H.; Shi, L.; Xie, J. S.; Tang, D. Z.; Zhao, J. P.; et al. Sci. Adv. 2021,  7 (1), eabc8180. doi: 10.1126/sciadv.abc8180
												 doi: 10.1126/sciadv.abc8180
											
										
				Green, R. A.; Adams, R. W.; Duckett, S. B.; Mewis, R. E.; Williamson, D. C.; Green, G. G. Prog. Nucl. Magn. Reson. Spectrosc. 2012,  67, 1. doi: 10.1016/j.pnmrs.2012.03.001
												 doi: 10.1016/j.pnmrs.2012.03.001
											
										
				Eills, J.; Cavallari, E.; Carrera, C.; Budker, D.; Aime, S.; Reineri, F.  J. Am. Chem. Soc. 2019,  141 (51), 20209. doi: 10.1021/jacs.9b10094
												 doi: 10.1021/jacs.9b10094
											
										
				Barskiy, D. A.; Knecht, S.; Yurkovskaya, A. V.; Ivanov, K. L. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 114–115, 33. doi: 10.1016/j.pnmrs.2019.05.005
												 doi: 10.1016/j.pnmrs.2019.05.005
											
										
				Koprivica, D.; Martinho, R. P.; Novakovic, M.; Jaroszewicz, M. J.; Frydman, L. J. Magn. Reson. 2022, 338, 107187. doi: 10.1016/j.jmr.2022.107187
												 doi: 10.1016/j.jmr.2022.107187
											
										
				Qiu, T. Y.; Liao, W. J.; Huang, Y. H.; Wu, J. Y.; Guo, D.; Liu, D. B.; Wang, X.; Cai, J.-F.; Hu, B. W.; Qu, X. B. IEEE Trans. Instrum. Meas. 2021,  70, 1. doi: 10.1109/tim.2021.3109743
												 doi: 10.1109/tim.2021.3109743
											
										
				Jiang, B.; Luo, F.; Ding, Y. M.; Sun, P.; Zhang, X.; Jiang, L. G.; Li, C.; Mao, X. A.; Yang, D. W.; Tang, C.; et al. Anal. Chem. 2013,  85 (4), 2523. doi: 10.1021/ac303726p
												 doi: 10.1021/ac303726p
											
										
				Kusaka, Y.; Hasegawa, T.; Kaji, H. J. Phys. Chem. A 2019,  123 (47), 10333. doi: 10.1021/acs.jpca.9b04437
												 doi: 10.1021/acs.jpca.9b04437
											
										
				Froeling, M.; Prompers, J. J.; Klomp, D. W. J.; van der Velden, T. A. Magn. Reson. Med. 2021,  85 (6), 2992. doi: 10.1002/mrm.28654
												 doi: 10.1002/mrm.28654
											
										
				LeCun, Y.; Bengio, Y.; Hinton, G. Nature 2015,  521 (7553), 436. doi: 10.1038/nature14539
												 doi: 10.1038/nature14539
											
										
				Manu, V. S.; Olivieri, C.; Veglia, G. Nat. Commun. 2023,  14 (1), 4144. doi: 10.1038/s41467-023-39581-4
												 doi: 10.1038/s41467-023-39581-4
											
										
				Wang, W. L.; Ma, L. H.; Maletic-Savatic, M.; Liu, Z. D. NMRQNet: a deep learning approach for automatic identification and quantification of metabolites using Nuclear Magnetic Resonance (NMR) in human plasma samples. bioRxiv [Preprint], 2023. Available Online: 
				Qu, X. B.; Huang, Y. H.; Lu, H. F.; Qiu, T. Y.; Guo, D.; Agback, T.; Orekhov, V.; Chen, Z. Angew. Chem. Int. Ed. 2020,  59 (26), 10297. doi: 10.1002/anie.201908162
												 doi: 10.1002/anie.201908162
											
										
				Zheng, X. X.; Yang, Z. X.; Yang, C.; Shi, X. Q.; Luo, Y.; Luo, J.; Zeng, Q.; Lin, Y. Q.; Chen, Z. J. Phys. Chem. Lett. 2022,  13 (9), 2101. doi: 10.1021/acs.jpclett.2c00100
												 doi: 10.1021/acs.jpclett.2c00100
											
										
				Karunanithy, G.; Hansen, D. F. J. Biomol. NMR 2021,  75 (4–5), 179. doi: 10.1007/s10858-021-00366-w
												 doi: 10.1007/s10858-021-00366-w
											
										
				Karunanithy, G.; Mackenzie, H. W.; Hansen, D. F. J. Am. Chem. Soc. 2021,  143 (41), 16935. doi: 10.1021/jacs.1c04010
												 doi: 10.1021/jacs.1c04010
											
										
				Chen, B.; Wu, L. B.; Cui, X. H.; Lin, E. P.; Cao, S. H.; Zhan, H. L.; Huang, Y. Q.; Yang, Y.; Chen, Z. Anal. Chem. 2023,  95 (31), 11596. doi: 10.1021/acs.analchem.3c00537
												 doi: 10.1021/acs.analchem.3c00537
											
										
				Lee, H. H.; Kim, H. Magn. Reson. Med. 2019,  82 (1), 33. doi: 10.1002/mrm.27727
												 doi: 10.1002/mrm.27727
											
										
				Chen, D. C.; Hu, W. Q.; Liu, H. T.; Zhou, Y. R.; Qiu, T. Y.; Huang, Y. H.; Wang, Z.; Lin, M. J.; Lin, L. J.; Wu, Z. G.; et al. IEEE T. Comput. Imag. 2023,  9, 448. doi: 10.1109/tci.2023.3267623
												 doi: 10.1109/tci.2023.3267623
											
										
				Wu, K.; Luo, J.; Zeng, Q.; Dong, X.; Chen, J. Y.; Zhan, C. Q.; Chen, Z.; Lin, Y. Q. Anal. Chem. 2021, 93 (3), 1377. doi: 10.1021/acs.analchem.0c03087
												 doi: 10.1021/acs.analchem.0c03087
											
										
Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 18th International Conference, Munich, Germany, Oct. 5–9, 2015; Navab, N., Hornegger, J., Wells, W. M., Frangi, A. F., Eds.; Springer Nature: Berlin, Germany, 2015; pp. 234–241.
				Stoller, D.; Ewert, S.; Dixon, S. A multi-scale neural network for end-to-end audio source separation. arxiv [Preprint], 2018. Available Online: 
				Macartney, C.; Weyde, T. Improved speech enhancement with the Wave-U-Net. arXiv[Preprint], 2018. Available Online: 
				Gao, J.; Liang, E.; Ma, R. S.; Li, F. D.; Liu, Y. X.; Liu, J.; Jiang, L.; Li, C. G.; Dai, H. M.; Wu, J. H.; et al. Angew. Chem. Int. Ed. 2017,  56 (42), 12982. doi: 10.1002/anie.201707114
												 doi: 10.1002/anie.201707114
											
										
Rethage, D.; Pons, J.; Serra, X. A Wavenet for speech denoising. In ICASSP 2018–2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, Apr. 15–20, 2018; IEEE: New York, US, 2018; pp. 5069–5073.
				Zangger, K. Prog. Nucl. Magn. Reson. Spectrosc. 2015,  86–87, 1. doi: 10.1016/j.pnmrs.2015.02.002
												 doi: 10.1016/j.pnmrs.2015.02.002
											
										
				Zhan, H. L.; Huang, Y. Q.; Chen, Z. J. Phys. Chem. Lett. 2019,  10 (23), 7356. doi: 10.1021/acs.jpclett.9b03092
												 doi: 10.1021/acs.jpclett.9b03092
											
										
				Zhan, H. L.; Hao, M. Y.; Lin, E. P.; Zheng, Z. Y.; Huang, C. D.; Cai, S. H.; Cao, S. H.; Huang, Y. Q.; Chen, Z. Anal. Chem. 2023,  95 (2), 1002. doi: 10.1021/acs.analchem.2c03678
												 doi: 10.1021/acs.analchem.2c03678
											
										
						
						
						
	                Yu Fang . AI-Empowered Education: A Case Study of Self-Directed Learning with ChatGPT-4. University Chemistry, 2025, 40(9): 1-4. doi: 10.12461/PKU.DXHX202502013
Chang Guo , Haipeng Yang , Hui Fang , Yingguo Zhao , Yating Li . 基于深度学习的物理化学课程DOK教学实践初探——以弯曲液面附加压力和蒸气压教学为例. University Chemistry, 2025, 40(6): 28-36. doi: 10.12461/PKU.DXHX202408049
Meirong Cui , Mo Xie , Jie Chao . Design and Reflections on the Integration of Artificial Intelligence in Physical Chemistry Laboratory Courses. University Chemistry, 2025, 40(5): 291-300. doi: 10.12461/PKU.DXHX202412015
Cheng-an Tao , Jian Huang , Yujiao Li . Exploring the Application of Artificial Intelligence in University Chemistry Laboratory Instruction. University Chemistry, 2025, 40(9): 5-10. doi: 10.12461/PKU.DXHX202408132
Lei Qin , Kai Guo . Application of Generative Artificial Intelligence in the Simulation of Acid-Base Titration Images. University Chemistry, 2025, 40(9): 11-18. doi: 10.12461/PKU.DXHX202408123
Xiao Ma , Junjie Wang , Xin Chen , Jingcheng Li , Lihong Zhao , Xueping Sun , Shaojuan Cheng , Fang Wang . Exploring Innovative Approaches to Chemistry Instructional Organization Driven by Artificial Intelligence. University Chemistry, 2025, 40(9): 99-106. doi: 10.12461/PKU.DXHX202410085
Run Yang , Huajie Pang , Huiping Zang , Ruizhong Zhang , Zhicheng Zhang , Xiyan Li , Libing Zhang . Artificial Intelligence-Enabled DNA Computing: Exploring New Frontiers in Bioinformatics. University Chemistry, 2025, 40(9): 107-117. doi: 10.12461/PKU.DXHX202412135
Yan Zhang , Limin Zhou , Xiaoyan Cao , Mutai Bao . Exploring the Application of Artificial Intelligence in Marine-Themed Integrated Physical Chemistry Experiments. University Chemistry, 2025, 40(9): 118-125. doi: 10.12461/PKU.DXHX202503062
Wuyi Feng , Di Zhao . Significance and Measures of Integrating Artificial Intelligence Technology into College Chemistry Teaching. University Chemistry, 2025, 40(9): 156-163. doi: 10.12461/PKU.DXHX202502107
Lingli Wu , Shengbin Lei . Generative AI-Driven Innovative Chemistry Teaching: Current Status and Future Prospects. University Chemistry, 2025, 40(9): 206-219. doi: 10.12461/PKU.DXHX202503069
Weigang Zhu , Jianfeng Wang , Qiang Qi , Jing Li , Zhicheng Zhang , Xi Yu . Curriculum Development for Cheminformatics and AI-Driven Chemistry Theory toward an Intelligent Era. University Chemistry, 2025, 40(9): 34-42. doi: 10.12461/PKU.DXHX202412002
Haoran Zhang , Yaxin Jin , Peng Kang , Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099
Ping Li , Chao Yin . Teaching Exploration and Practical Innovation of General Education Courses in the Context of Artificial Intelligence. University Chemistry, 2024, 39(10): 402-407. doi: 10.12461/PKU.DXHX202403075
Yifan Liu , Haonan Peng . AI-Assisted New Era in Chemistry: A Review of the Application and Development of Artificial Intelligence in Chemistry. University Chemistry, 2025, 40(7): 189-199. doi: 10.12461/PKU.DXHX202405182
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014
Liangjun Chen , Yu Zhang , Zhicheng Zhang , Yongwu Peng . AI-Empowering Reform in University Chemistry Education: Practical Exploration of Cultivating Informationization and Intelligent Literacy. University Chemistry, 2025, 40(9): 220-227. doi: 10.12461/PKU.DXHX202503124
Liping Wang , Huanfeng Wang , Yuling Li , Lingchuan Li , Xiaojing Li , Huifeng Chen , Bowen Ji , Linna Wang . Exploring the Full Process of a Research-Based Teaching Model through the Deep Integration of Theory and Practice: A Case Study of the Self-Designed Scheme for “Determination of Total Acid Content in White Vinegar”. University Chemistry, 2025, 40(5): 244-251. doi: 10.12461/PKU.DXHX202406035
Xintian Xie , Sicong Ma , Yefei Li , Cheng Shang , Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164
Jinkang Jin , Yidian Sheng , Ping Lu , Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054
Jun Jiang , Quan Lan , Yuan Zheng , Zhenggen Zha . Teaching Exploration and Practice of the Organic Chemistry Laboratory English Course Based on the “Flipped Classroom + MOOC” Teaching Model. University Chemistry, 2025, 40(9): 279-286. doi: 10.12461/PKU.DXHX202410094