Citation: Haolin Zhan, Qiyuan Fang, Jiawei Liu, Xiaoqi Shi, Xinyu Chen, Yuqing Huang, Zhong Chen. Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network[J]. Acta Physico-Chimica Sinica, ;2025, 41(2): 231004. doi: 10.3866/PKU.WHXB202310045 shu

Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network

  • Corresponding author: Haolin Zhan, hlzhan@hfut.edu.cn
  • Received Date: 30 October 2023
    Revised Date: 18 December 2023
    Accepted Date: 19 December 2023

    Fund Project: the National Natural Science Foundation of China 22204038

  • Nuclear magnetic resonance (NMR) spectroscopy serves as a robust non-invasive characterization technique for probing molecular structure and providing quantitative analysis, however, further NMR applications are generally confined by the low sensitivity performance, especially for heteronuclear experiments. Herein, we present a lightweight deep learning protocol for high-quality, reliable, and very fast noise reduction of NMR spectroscopy. Along with the lightweight network advantages and fast computational efficiency, this deep learning (DL) protocol effectively reduces noises and spurious signals, and recovers desired weak peaks almost entirely drown in severe noise, thus implementing considerable signal-to-noise ratio (SNR) improvement. Additionally, it enables the satisfactory spectral denoising in the frequency domain and allows one to distinguish real signals and noise artifacts using solely physics-driven synthetic NMR data learning. Besides, the trained lightweight network model is general for one-dimensional and multi-dimensional NMR spectroscopy, and can be exploited on diverse chemical samples. As a result, the deep learning method presented in this study holds potential applications in the fields of chemistry, biology, materials, life sciences, and among others.
  • 加载中
    1. [1]

      Theillet, F. X. Chem. Rev. 2022, 122 (10), 9497. doi: 10.1021/acs.chemrev.1c00937  doi: 10.1021/acs.chemrev.1c00937

    2. [2]

      Chen, K.; Zornes, A.; Nguyen, V.; Wang, B.; Gan, Z. H.; Crossley, S. P.; White, J. L. J. Am. Chem. Soc. 2022, 144 (37), 16916. doi: 10.1021/jacs.2c05332  doi: 10.1021/jacs.2c05332

    3. [3]

      Xin, J. X.; Wei, D. X.; Ren, Y.; Wang, J. L.; Yang, G.; Zhang, H.; Li, J.; Fu, C.; Yao, Y. F. Magn. Reson. Med. 2022, 89 (5), 1728. doi: 10.1002/mrm.29562  doi: 10.1002/mrm.29562

    4. [4]

      Zhan, H. L.; Ji, L. F.; Cao, S. H.; Feng, Y.; Jiang, Y. X.; Huang, Y. Q.; Sun, S. G.; Chen, Z. Chin. J. Catal. 2023, 53, 171. doi: 10.1016/S1872-2067(23)64526-7  doi: 10.1016/S1872-2067(23)64526-7

    5. [5]

      Zhan, H. L.; Gao, C. Y.; Huang, C. D.; Lin, X. Q.; Huang, Y. Q.; Chen, Z. Anal. Chim. Acta 2023, 1277, 341682. doi: 10.1016/j.aca.2023.341682  doi: 10.1016/j.aca.2023.341682

    6. [6]

      Zhan, H. L.; Hao, M. Y.; Feng, Y.; Cao, S. H.; Ni, Z. K.; Huang, Y. Q.; Chen, Z. J. Phys. Chem. Lett. 2021, 12 (3), 1073. doi: 10.1021/acs.jpclett.0c03549  doi: 10.1021/acs.jpclett.0c03549

    7. [7]

      Xu, J.; Deng, F. Acta Phys. -Chim. Sin. 2020, 36 (4), 1912074.  doi: 10.3866/PKU.WHXB201912074

    8. [8]

      Hu, R.; Wei, L. Y.; Xian, J. L.; Fang, G. Y.; Wu, Z. A.; Fan, M.; Guo, J. Y.; Li, Q. X.; Liu, K. S.; Jiang, H. Y.; et al. Acta Phys. -Chim. Sin. 2023, 39 (9), 2212025.  doi: 10.3866/PKU.WHXB202212025

    9. [9]

      He, Z. J.; Huang, M.; Lin, T. J.; Zhong, L. S. Acta Phys. -Chim. Sin. 2023, 39 (9), 2212060.  doi: 10.3866/PKU.WHXB202212060

    10. [10]

      Gan, Z. H.; Hung, I.; Wang, X. L.; Paulino, J.; Wu, G.; Litvak, I. M.; Gor'kov, P. L.; Brey, W. W.; Lendi, P.; Schiano, J. L.; et al. J. Magn. Reson. 2017, 284, 125. doi: 10.1016/j.jmr.2017.08.007  doi: 10.1016/j.jmr.2017.08.007

    11. [11]

      Chen, K. Z.; Horstmeier, S.; Nguyen, V. T.; Wang, B.; Crossley, S. P.; Pham, T.; Gan, Z. H.; Hung, I.; White, J. L. J. Am. Chem. Soc. 2020, 142 (16), 7514. doi: 10.1021/jacs.0c00590  doi: 10.1021/jacs.0c00590

    12. [12]

      Kovacs, H.; Moskau, D.; Spraul, M. Prog. Nucl. Magn. Reson. Spectrosc. 2005, 46 (2–3), 131. doi: 10.1016/j.pnmrs.2005.03.001  doi: 10.1016/j.pnmrs.2005.03.001

    13. [13]

      Zhang, R. C.; Mroue, K. H.; Ramamoorthy, A. J. Magn. Reson. 2016, 266, 59. doi: 10.1016/j.jmr.2016.03.006  doi: 10.1016/j.jmr.2016.03.006

    14. [14]

      Zhou, Y.; van Zijl, P. C. M.; Xu, X.; Xu, J. D.; Li, Y. G.; Chen, L.; Yadav, N. N. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (6), 3144. doi: 10.1073/pnas.1909921117  doi: 10.1073/pnas.1909921117

    15. [15]

      Sonnefeld, A.; Razanahoera, A.; Pelupessy, P.; Bodenhausen, G.; Sheberstov, K. Sci. Adv. 2022, 8, eade2113. doi: 10.1126/sciadv.ade2113  doi: 10.1126/sciadv.ade2113

    16. [16]

      Pang, Z. F.; Xi, G. H.; Gao, L.; Cao, W. C.; Yin, J. L.; Kong, X. Q. Acta Phys. -Chim. Sin. 2020, 36 (4), 1906018.  doi: 10.3866/PKU.WHXB201906018

    17. [17]

      Elliott, S. J.; Stern, Q.; Ceillier, M.; El Darai, T.; Cousin, S. F.; Cala, O.; Jannin, S. Prog. Nucl. Magn. Reson. Spectrosc. 2021, 126–127, 59. doi: 10.1016/j.pnmrs.2021.04.002  doi: 10.1016/j.pnmrs.2021.04.002

    18. [18]

      Kharbanda, Y.; Urbańczyk, M.; Zhivonitko, V. V.; Mailhiot, S.; Kettunen, M. I.; Telkki, V.-V. Angew. Chem. Int. Ed. 2022, 61 (28), e202203957. doi: 10.1002/anie.202203957  doi: 10.1002/anie.202203957

    19. [19]

      Jaroszewicz, M. J.; Liu, M.; Kim, J.; Zhang, G.; Kim, Y.; Hilty, C.; Frydman, L. Nat. Commun. 2022, 13 (1), 833. doi: 10.1038/s41467-022-28304-w  doi: 10.1038/s41467-022-28304-w

    20. [20]

      Szekely, O.; Olsen, G. L.; Novakovic, M.; Rosenzweig, R.; Frydman, L. J. Am. Chem. Soc. 2020, 142 (20), 9267. doi: 10.1021/jacs.0c00807  doi: 10.1021/jacs.0c00807

    21. [21]

      Marshall, H.; Stewart, N. J.; Chan, H. F.; Rao, M.; Norquay, G.; Wild, J. M. Prog. Nucl. Magn. Reson. Spectrosc. 2021, 122, 42. doi: 10.1016/j.pnmrs.2020.11.002  doi: 10.1016/j.pnmrs.2020.11.002

    22. [22]

      Li, H. D.; Zhao, X. C.; Wang, Y. J.; Lou, X.; Chen, S. Z.; Deng, H.; Shi, L.; Xie, J. S.; Tang, D. Z.; Zhao, J. P.; et al. Sci. Adv. 2021, 7 (1), eabc8180. doi: 10.1126/sciadv.abc8180  doi: 10.1126/sciadv.abc8180

    23. [23]

      Green, R. A.; Adams, R. W.; Duckett, S. B.; Mewis, R. E.; Williamson, D. C.; Green, G. G. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 67, 1. doi: 10.1016/j.pnmrs.2012.03.001  doi: 10.1016/j.pnmrs.2012.03.001

    24. [24]

      Eills, J.; Cavallari, E.; Carrera, C.; Budker, D.; Aime, S.; Reineri, F. J. Am. Chem. Soc. 2019, 141 (51), 20209. doi: 10.1021/jacs.9b10094  doi: 10.1021/jacs.9b10094

    25. [25]

      Barskiy, D. A.; Knecht, S.; Yurkovskaya, A. V.; Ivanov, K. L. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 114–115, 33. doi: 10.1016/j.pnmrs.2019.05.005  doi: 10.1016/j.pnmrs.2019.05.005

    26. [26]

      Koprivica, D.; Martinho, R. P.; Novakovic, M.; Jaroszewicz, M. J.; Frydman, L. J. Magn. Reson. 2022, 338, 107187. doi: 10.1016/j.jmr.2022.107187  doi: 10.1016/j.jmr.2022.107187

    27. [27]

      Qiu, T. Y.; Liao, W. J.; Huang, Y. H.; Wu, J. Y.; Guo, D.; Liu, D. B.; Wang, X.; Cai, J.-F.; Hu, B. W.; Qu, X. B. IEEE Trans. Instrum. Meas. 2021, 70, 1. doi: 10.1109/tim.2021.3109743  doi: 10.1109/tim.2021.3109743

    28. [28]

      Jiang, B.; Luo, F.; Ding, Y. M.; Sun, P.; Zhang, X.; Jiang, L. G.; Li, C.; Mao, X. A.; Yang, D. W.; Tang, C.; et al. Anal. Chem. 2013, 85 (4), 2523. doi: 10.1021/ac303726p  doi: 10.1021/ac303726p

    29. [29]

      Kusaka, Y.; Hasegawa, T.; Kaji, H. J. Phys. Chem. A 2019, 123 (47), 10333. doi: 10.1021/acs.jpca.9b04437  doi: 10.1021/acs.jpca.9b04437

    30. [30]

      Froeling, M.; Prompers, J. J.; Klomp, D. W. J.; van der Velden, T. A. Magn. Reson. Med. 2021, 85 (6), 2992. doi: 10.1002/mrm.28654  doi: 10.1002/mrm.28654

    31. [31]

      LeCun, Y.; Bengio, Y.; Hinton, G. Nature 2015, 521 (7553), 436. doi: 10.1038/nature14539  doi: 10.1038/nature14539

    32. [32]

      Manu, V. S.; Olivieri, C.; Veglia, G. Nat. Commun. 2023, 14 (1), 4144. doi: 10.1038/s41467-023-39581-4  doi: 10.1038/s41467-023-39581-4

    33. [33]

      Wang, W. L.; Ma, L. H.; Maletic-Savatic, M.; Liu, Z. D. NMRQNet: a deep learning approach for automatic identification and quantification of metabolites using Nuclear Magnetic Resonance (NMR) in human plasma samples. bioRxiv [Preprint], 2023. Available Online: https://www.ncbi.nlm.nih.gov/pubmed/36909516 (accessed on Mar 2, 2023).

    34. [34]

      Qu, X. B.; Huang, Y. H.; Lu, H. F.; Qiu, T. Y.; Guo, D.; Agback, T.; Orekhov, V.; Chen, Z. Angew. Chem. Int. Ed. 2020, 59 (26), 10297. doi: 10.1002/anie.201908162  doi: 10.1002/anie.201908162

    35. [35]

      Zheng, X. X.; Yang, Z. X.; Yang, C.; Shi, X. Q.; Luo, Y.; Luo, J.; Zeng, Q.; Lin, Y. Q.; Chen, Z. J. Phys. Chem. Lett. 2022, 13 (9), 2101. doi: 10.1021/acs.jpclett.2c00100  doi: 10.1021/acs.jpclett.2c00100

    36. [36]

      Karunanithy, G.; Hansen, D. F. J. Biomol. NMR 2021, 75 (4–5), 179. doi: 10.1007/s10858-021-00366-w  doi: 10.1007/s10858-021-00366-w

    37. [37]

      Karunanithy, G.; Mackenzie, H. W.; Hansen, D. F. J. Am. Chem. Soc. 2021, 143 (41), 16935. doi: 10.1021/jacs.1c04010  doi: 10.1021/jacs.1c04010

    38. [38]

      Chen, B.; Wu, L. B.; Cui, X. H.; Lin, E. P.; Cao, S. H.; Zhan, H. L.; Huang, Y. Q.; Yang, Y.; Chen, Z. Anal. Chem. 2023, 95 (31), 11596. doi: 10.1021/acs.analchem.3c00537  doi: 10.1021/acs.analchem.3c00537

    39. [39]

      Lee, H. H.; Kim, H. Magn. Reson. Med. 2019, 82 (1), 33. doi: 10.1002/mrm.27727  doi: 10.1002/mrm.27727

    40. [40]

      Chen, D. C.; Hu, W. Q.; Liu, H. T.; Zhou, Y. R.; Qiu, T. Y.; Huang, Y. H.; Wang, Z.; Lin, M. J.; Lin, L. J.; Wu, Z. G.; et al. IEEE T. Comput. Imag. 2023, 9, 448. doi: 10.1109/tci.2023.3267623  doi: 10.1109/tci.2023.3267623

    41. [41]

      Wu, K.; Luo, J.; Zeng, Q.; Dong, X.; Chen, J. Y.; Zhan, C. Q.; Chen, Z.; Lin, Y. Q. Anal. Chem. 2021, 93 (3), 1377. doi: 10.1021/acs.analchem.0c03087  doi: 10.1021/acs.analchem.0c03087

    42. [42]

      Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted InterventionMICCAI 2015, 18th International Conference, Munich, Germany, Oct. 5–9, 2015; Navab, N., Hornegger, J., Wells, W. M., Frangi, A. F., Eds.; Springer Nature: Berlin, Germany, 2015; pp. 234–241.

    43. [43]

      Stoller, D.; Ewert, S.; Dixon, S. A multi-scale neural network for end-to-end audio source separation. arxiv [Preprint], 2018. Available Online: https://arxiv.org/abs/1806.03185 (accessed on Jun 8, 2018).

    44. [44]

      Macartney, C.; Weyde, T. Improved speech enhancement with the Wave-U-Net. arXiv[Preprint], 2018. Available Online: https://arxiv.org/abs/1811.11307 (accessed on Nov 27, 2018).

    45. [45]

      Gao, J.; Liang, E.; Ma, R. S.; Li, F. D.; Liu, Y. X.; Liu, J.; Jiang, L.; Li, C. G.; Dai, H. M.; Wu, J. H.; et al. Angew. Chem. Int. Ed. 2017, 56 (42), 12982. doi: 10.1002/anie.201707114  doi: 10.1002/anie.201707114

    46. [46]

      Rethage, D.; Pons, J.; Serra, X. A Wavenet for speech denoising. In ICASSP 2018–2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, Apr. 15–20, 2018; IEEE: New York, US, 2018; pp. 5069–5073.

    47. [47]

      Zangger, K. Prog. Nucl. Magn. Reson. Spectrosc. 2015, 86–87, 1. doi: 10.1016/j.pnmrs.2015.02.002  doi: 10.1016/j.pnmrs.2015.02.002

    48. [48]

      Zhan, H. L.; Huang, Y. Q.; Chen, Z. J. Phys. Chem. Lett. 2019, 10 (23), 7356. doi: 10.1021/acs.jpclett.9b03092  doi: 10.1021/acs.jpclett.9b03092

    49. [49]

      Zhan, H. L.; Hao, M. Y.; Lin, E. P.; Zheng, Z. Y.; Huang, C. D.; Cai, S. H.; Cao, S. H.; Huang, Y. Q.; Chen, Z. Anal. Chem. 2023, 95 (2), 1002. doi: 10.1021/acs.analchem.2c03678  doi: 10.1021/acs.analchem.2c03678

  • 加载中
    1. [1]

      Yu Fang . AI-Empowered Education: A Case Study of Self-Directed Learning with ChatGPT-4. University Chemistry, 2025, 40(9): 1-4. doi: 10.12461/PKU.DXHX202502013

    2. [2]

      Chang Guo Haipeng Yang Hui Fang Yingguo Zhao Yating Li . 基于深度学习的物理化学课程DOK教学实践初探——以弯曲液面附加压力和蒸气压教学为例. University Chemistry, 2025, 40(6): 28-36. doi: 10.12461/PKU.DXHX202408049

    3. [3]

      Meirong Cui Mo Xie Jie Chao . Design and Reflections on the Integration of Artificial Intelligence in Physical Chemistry Laboratory Courses. University Chemistry, 2025, 40(5): 291-300. doi: 10.12461/PKU.DXHX202412015

    4. [4]

      Cheng-an Tao Jian Huang Yujiao Li . Exploring the Application of Artificial Intelligence in University Chemistry Laboratory Instruction. University Chemistry, 2025, 40(9): 5-10. doi: 10.12461/PKU.DXHX202408132

    5. [5]

      Lei Qin Kai Guo . Application of Generative Artificial Intelligence in the Simulation of Acid-Base Titration Images. University Chemistry, 2025, 40(9): 11-18. doi: 10.12461/PKU.DXHX202408123

    6. [6]

      Xiao Ma Junjie Wang Xin Chen Jingcheng Li Lihong Zhao Xueping Sun Shaojuan Cheng Fang Wang . Exploring Innovative Approaches to Chemistry Instructional Organization Driven by Artificial Intelligence. University Chemistry, 2025, 40(9): 99-106. doi: 10.12461/PKU.DXHX202410085

    7. [7]

      Run Yang Huajie Pang Huiping Zang Ruizhong Zhang Zhicheng Zhang Xiyan Li Libing Zhang . Artificial Intelligence-Enabled DNA Computing: Exploring New Frontiers in Bioinformatics. University Chemistry, 2025, 40(9): 107-117. doi: 10.12461/PKU.DXHX202412135

    8. [8]

      Yan Zhang Limin Zhou Xiaoyan Cao Mutai Bao . Exploring the Application of Artificial Intelligence in Marine-Themed Integrated Physical Chemistry Experiments. University Chemistry, 2025, 40(9): 118-125. doi: 10.12461/PKU.DXHX202503062

    9. [9]

      Wuyi Feng Di Zhao . Significance and Measures of Integrating Artificial Intelligence Technology into College Chemistry Teaching. University Chemistry, 2025, 40(9): 156-163. doi: 10.12461/PKU.DXHX202502107

    10. [10]

      Lingli Wu Shengbin Lei . Generative AI-Driven Innovative Chemistry Teaching: Current Status and Future Prospects. University Chemistry, 2025, 40(9): 206-219. doi: 10.12461/PKU.DXHX202503069

    11. [11]

      Weigang Zhu Jianfeng Wang Qiang Qi Jing Li Zhicheng Zhang Xi Yu . Curriculum Development for Cheminformatics and AI-Driven Chemistry Theory toward an Intelligent Era. University Chemistry, 2025, 40(9): 34-42. doi: 10.12461/PKU.DXHX202412002

    12. [12]

      Haoran Zhang Yaxin Jin Peng Kang Sheng Zhang . The Convergence and Innovative Application of Artificial Intelligence in Scientific Research: A Case Study of Electrocatalytic Carbon Dioxide Reduction in the Context of the Dual-Carbon Strategy. University Chemistry, 2025, 40(9): 148-155. doi: 10.12461/PKU.DXHX202412099

    13. [13]

      Ping Li Chao Yin . Teaching Exploration and Practical Innovation of General Education Courses in the Context of Artificial Intelligence. University Chemistry, 2024, 39(10): 402-407. doi: 10.12461/PKU.DXHX202403075

    14. [14]

      Yifan Liu Haonan Peng . AI-Assisted New Era in Chemistry: A Review of the Application and Development of Artificial Intelligence in Chemistry. University Chemistry, 2025, 40(7): 189-199. doi: 10.12461/PKU.DXHX202405182

    15. [15]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    16. [16]

      Liangjun Chen Yu Zhang Zhicheng Zhang Yongwu Peng . AI-Empowering Reform in University Chemistry Education: Practical Exploration of Cultivating Informationization and Intelligent Literacy. University Chemistry, 2025, 40(9): 220-227. doi: 10.12461/PKU.DXHX202503124

    17. [17]

      Liping Wang Huanfeng Wang Yuling Li Lingchuan Li Xiaojing Li Huifeng Chen Bowen Ji Linna Wang . Exploring the Full Process of a Research-Based Teaching Model through the Deep Integration of Theory and Practice: A Case Study of the Self-Designed Scheme for “Determination of Total Acid Content in White Vinegar”. University Chemistry, 2025, 40(5): 244-251. doi: 10.12461/PKU.DXHX202406035

    18. [18]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    19. [19]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    20. [20]

      Jun Jiang Quan Lan Yuan Zheng Zhenggen Zha . Teaching Exploration and Practice of the Organic Chemistry Laboratory English Course Based on the “Flipped Classroom + MOOC” Teaching Model. University Chemistry, 2025, 40(9): 279-286. doi: 10.12461/PKU.DXHX202410094

Metrics
  • PDF Downloads(3)
  • Abstract views(272)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return