Citation: Xuechen Hu,  Qiuying Xia,  Fan Yue,  Xinyi He,  Zhenghao Mei,  Jinshi Wang,  Hui Xia,  Xiaodong Huang. Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230904. doi: 10.3866/PKU.WHXB202309046 shu

Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery

  • Corresponding author: Xiaodong Huang, xdhuang@seu.edu.cn
  • Received Date: 28 September 2023
    Revised Date: 3 November 2023
    Accepted Date: 6 November 2023

    Fund Project: The project was supported by the National Key R&D Program of China (2020YFB2007400).

  • Owing to their remarkable miniaturization and integration capabilities, all-solid-state thin-film lithium-ion batteries are quite appropriate as the on-chip power for microsystems, such as implantable medical devices, micro-electro-mechanical systems and integrated circuits. The performance of the all-solid-state thin-film lithium-ion batteries is greatly determined by the anode film. Metal Li is usually adopted as the anode material, however, the issues, including Li dendrite growth and poor thermal stability, hinder its applications in the high-temperature and high-safety fields, such as industrial and military. Therefore, various anode materials have been investigated in recent years. Unfortunately, few anode materials can achieve high specific capacity and good stability simultaneously. Due to its relatively high specific capacity and good electrochemical stability, LiNbO3 has been widely used as a coating layer in the batteries and has been demonstrated to effectively suppress side reactions at the electrode|electrolyte interface. However, there is still lack of deep understanding of the electrochemical characteristics of LiNbO3; also, no previous work has been performed to explore the applications of LiNbO3 in the all-solid-state thin-film lithium-ion batteries. In this work, the electrochemical characteristics of LiNbO3as a new anode material are carefully investigated. It is found that the LiNbO3anode has relatively high specific capacity (410.2 mAh∙g-1), high rate capability (80.9 mAh∙g-1 at 30C), good cycling stability (100% capacity retention over 2000 cycles at 1C) and high ionic conductivity (4.5×10-8 S∙cm–1 at room temperature). Moreover, an all-solid-state thin-film lithium-ion battery with a Pt current collector|NCM523 cathode|LiPON electrolyte|LiNbO3 anode|Pt current collector configuration is also prepared. This full battery presents good performance in terms of its relatively high area capacity (16.3 μAh∙cm-2 at a current density of 0.5 μA∙cm-2), good rate characteristic (1.9 μAh∙cm-2 even at a high current density of 30 μA∙cm-2) and good stability (86.4% capacity retention after 300 cycles). Particularly, the retained capacity remains as high as 95.6% even when this full battery operates continuously at 100 ℃ for ~200 h, demonstrating its good thermal stability. As confirmed by both the electrochemical and micro characterization, the LiPON|LiNbO3interface is quite stable under both the repeated charge/discharge cycling and high temperature operation, which contributes to the good performance of this full battery even under high temperatures. For comparison, the LiPON|Li interface degrades significantly under high temperatures, thus resulting in poor performance of the corresponding full battery. This work is helpful to develop a new anode film and all-solid-state thin-film lithium-ion battery which is suitable for the industrial and military applications.
  • 加载中
    1. [1]

    2. [2]

      (2) Wang, Z. C.; Chen, Y. H.; Zhou, Y. Y.; Ouyang, J.; Xu, S.; Wei, L. Nanoscale Adv. 2022, 4 (20), 4237. doi: 10.1039/D2NA00566B

    3. [3]

      (3) Prabhu, S. A.; Kunhiraman, A. K.; Naveen, T. B.; Rakkesh, R. A.; Peeters, M. Sustain. Chem. Pharm. 2022, 28, 100693. doi: 10.1016/j.scp.2022.100693

    4. [4]

    5. [5]

      (5) Deng, J. H.; Yang, X. Q.; Zhang, G. Q. Mater. Today Commun. 2022, 31, 103570. doi: 10.1016/j.mtcomm.2022.103570

    6. [6]

    7. [7]

      (7) Geng, Z.; Lu, J. Z.; Li, Q.; Qiu, J. L.; Wang, Y.; Peng, J. Y.; Huang, J.; Li, W. J.; Yu, X. Q.; Li, H. Energy Stor. Mater. 2019, 23, 646. doi: 10.1016/j.ensm.2019.03.005

    8. [8]

      (8) Hu, J. G.; Kontos, A. G.; Georgiou, C. A.; Bidikoudi, M.; Stein, N.; Breen, B.; Falaras, P. Electrochim. Acta 2018, 271, 268. doi: 10.1016/j.electacta.2018.03.125

    9. [9]

      (9) Baranwal, A. K.; Kanaya, S.; Peiris, T. A. N.; Mizuta, G.; Nishina, T.; Kanda, H.; Miyasaka, T.; Segawa, H.; Ito, S. ChemSusChem 2016, 9 (18), 2604. doi: 10.1002/cssc.201600933

    10. [10]

      (10) Wen, L. J.; Wan, Y.; Jin, C.; Xu, G.; Ma, H.; Zhou, L.; Yue, Z. H. J. Energy Storage 2023, 73, 108835. doi: 10.1016/j.est.2023.108835

    11. [11]

      (11) Song, A.; Zhang, W. J.; Guo, H. T.; Dong, L.; Jin, T.; Shen, C.; Xie, K. Y. Adv. Energy Mater. 2023, 13 (39), 2301464. doi: 10.1002/aenm.202301464

    12. [12]

      (12) Zhang, M. M.; Chen, J. Y.; Li, H.; Wang, C. R. Rare Metals 2021, 40 (2), 249. doi: 10.1007/s12598-020-01499-x

    13. [13]

      (13) Erdas, A.; Ozcan, S.; Nalci, D.; Guler, M. O.; Akbulut, H. Surf. Coat. Tech. 2015, 271, 136. doi: 10.1016/j.surfcoat.2014.12.067

    14. [14]

      (14) Xu, J. K.; Du, Y.; Tian, Y. H.; Wang, C. X. Int. J. Optomechatronics 2020, 14 (1), 94. doi: 10.1080/15599612.2020.1857890

    15. [15]

      (15) Ju, Y.; Zhou, H.; Huang, Y. L.; Zhao, Y.; Deng, X.; Yang, Z. G.; Wang, F. J.; Gu, Q. Q.; Deng, G. L.; Zuo, H. Y. Nanoscale 2023, 15 (34), 13965. doi: 10.1039/D3NR02278A

    16. [16]

      (16) Son J. T. Electrochem. Commun. 2004, 6 (10), 990. doi: 10.1016/j.elecom.2004.07.007

    17. [17]

      (17) Kim, H.; Byun, D.; Chang, W.; Jung, H. G.; Choi, W. J. Mater. Chem. A 2017, 5 (47), 25077. doi: 10.1039/C7TA07898F

    18. [18]

      (18) Lu, G. Z.; Peng, W. X.; Zhang, Y. T.; Wang, X. Q.; Shi, X. X.; Song, D. W.; Zhang, H. Z.; Zhang, L. Q. Electrochim. Acta 2021, 368, 137639. doi: 10.1016/j.electacta.2020.137639

    19. [19]

      (19) Fan, Q.; Lei, L. X.; Yin, G.; Sun, Y. M. Chem. Commun. 2014, 50 (18), 2370. doi: 10.1039/C3CC48367C

    20. [20]

      (20) Verma, A.; Smith, K.; Santhanagopalan, S.; Abraham, D.; Yao, K. P.; Mukherjee, P. P. J. Electrochem. Soc. 2017, 164 (13), A3380. doi: 10.1149/2.1701713jes

    21. [21]

      (21) Luo, H.; Xu, C. Y.; Wang, B.; Jin, F.; Wang, L.; Liu, T.; Zhou, Y.; Wang, D. L. Electrochim. Acta 2019, 313, 10. doi: 10.1016/j.electacta.2019.05.018

    22. [22]

      (22) Pagani, F.; Döbeli, M.; Battaglia, C. Batteries Supercaps 2021, 4 (2), 316. doi: 10.1002/batt.202000159

    23. [23]

      (23) Chiang, C. Y.; Reddy, M. J.; Chu, P. P. Solid State Ion. 2004, 175 (1–4), 631. doi: 10.1016/j.ssi.2003.12.039

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    6. [6]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    7. [7]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    18. [18]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    19. [19]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    20. [20]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

Metrics
  • PDF Downloads(1)
  • Abstract views(86)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return