Citation: Xuechen Hu,  Qiuying Xia,  Fan Yue,  Xinyi He,  Zhenghao Mei,  Jinshi Wang,  Hui Xia,  Xiaodong Huang. Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica, ;2024, 40(2): 230904. doi: 10.3866/PKU.WHXB202309046 shu

Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery

  • Corresponding author: Xiaodong Huang, xdhuang@seu.edu.cn
  • Received Date: 28 September 2023
    Revised Date: 3 November 2023
    Accepted Date: 6 November 2023

    Fund Project: The project was supported by the National Key R&D Program of China (2020YFB2007400).

  • Owing to their remarkable miniaturization and integration capabilities, all-solid-state thin-film lithium-ion batteries are quite appropriate as the on-chip power for microsystems, such as implantable medical devices, micro-electro-mechanical systems and integrated circuits. The performance of the all-solid-state thin-film lithium-ion batteries is greatly determined by the anode film. Metal Li is usually adopted as the anode material, however, the issues, including Li dendrite growth and poor thermal stability, hinder its applications in the high-temperature and high-safety fields, such as industrial and military. Therefore, various anode materials have been investigated in recent years. Unfortunately, few anode materials can achieve high specific capacity and good stability simultaneously. Due to its relatively high specific capacity and good electrochemical stability, LiNbO3 has been widely used as a coating layer in the batteries and has been demonstrated to effectively suppress side reactions at the electrode|electrolyte interface. However, there is still lack of deep understanding of the electrochemical characteristics of LiNbO3; also, no previous work has been performed to explore the applications of LiNbO3 in the all-solid-state thin-film lithium-ion batteries. In this work, the electrochemical characteristics of LiNbO3as a new anode material are carefully investigated. It is found that the LiNbO3anode has relatively high specific capacity (410.2 mAh∙g-1), high rate capability (80.9 mAh∙g-1 at 30C), good cycling stability (100% capacity retention over 2000 cycles at 1C) and high ionic conductivity (4.5×10-8 S∙cm–1 at room temperature). Moreover, an all-solid-state thin-film lithium-ion battery with a Pt current collector|NCM523 cathode|LiPON electrolyte|LiNbO3 anode|Pt current collector configuration is also prepared. This full battery presents good performance in terms of its relatively high area capacity (16.3 μAh∙cm-2 at a current density of 0.5 μA∙cm-2), good rate characteristic (1.9 μAh∙cm-2 even at a high current density of 30 μA∙cm-2) and good stability (86.4% capacity retention after 300 cycles). Particularly, the retained capacity remains as high as 95.6% even when this full battery operates continuously at 100 ℃ for ~200 h, demonstrating its good thermal stability. As confirmed by both the electrochemical and micro characterization, the LiPON|LiNbO3interface is quite stable under both the repeated charge/discharge cycling and high temperature operation, which contributes to the good performance of this full battery even under high temperatures. For comparison, the LiPON|Li interface degrades significantly under high temperatures, thus resulting in poor performance of the corresponding full battery. This work is helpful to develop a new anode film and all-solid-state thin-film lithium-ion battery which is suitable for the industrial and military applications.
  • 加载中
    1. [1]

    2. [2]

      (2) Wang, Z. C.; Chen, Y. H.; Zhou, Y. Y.; Ouyang, J.; Xu, S.; Wei, L. Nanoscale Adv. 2022, 4 (20), 4237. doi: 10.1039/D2NA00566B

    3. [3]

      (3) Prabhu, S. A.; Kunhiraman, A. K.; Naveen, T. B.; Rakkesh, R. A.; Peeters, M. Sustain. Chem. Pharm. 2022, 28, 100693. doi: 10.1016/j.scp.2022.100693

    4. [4]

    5. [5]

      (5) Deng, J. H.; Yang, X. Q.; Zhang, G. Q. Mater. Today Commun. 2022, 31, 103570. doi: 10.1016/j.mtcomm.2022.103570

    6. [6]

    7. [7]

      (7) Geng, Z.; Lu, J. Z.; Li, Q.; Qiu, J. L.; Wang, Y.; Peng, J. Y.; Huang, J.; Li, W. J.; Yu, X. Q.; Li, H. Energy Stor. Mater. 2019, 23, 646. doi: 10.1016/j.ensm.2019.03.005

    8. [8]

      (8) Hu, J. G.; Kontos, A. G.; Georgiou, C. A.; Bidikoudi, M.; Stein, N.; Breen, B.; Falaras, P. Electrochim. Acta 2018, 271, 268. doi: 10.1016/j.electacta.2018.03.125

    9. [9]

      (9) Baranwal, A. K.; Kanaya, S.; Peiris, T. A. N.; Mizuta, G.; Nishina, T.; Kanda, H.; Miyasaka, T.; Segawa, H.; Ito, S. ChemSusChem 2016, 9 (18), 2604. doi: 10.1002/cssc.201600933

    10. [10]

      (10) Wen, L. J.; Wan, Y.; Jin, C.; Xu, G.; Ma, H.; Zhou, L.; Yue, Z. H. J. Energy Storage 2023, 73, 108835. doi: 10.1016/j.est.2023.108835

    11. [11]

      (11) Song, A.; Zhang, W. J.; Guo, H. T.; Dong, L.; Jin, T.; Shen, C.; Xie, K. Y. Adv. Energy Mater. 2023, 13 (39), 2301464. doi: 10.1002/aenm.202301464

    12. [12]

      (12) Zhang, M. M.; Chen, J. Y.; Li, H.; Wang, C. R. Rare Metals 2021, 40 (2), 249. doi: 10.1007/s12598-020-01499-x

    13. [13]

      (13) Erdas, A.; Ozcan, S.; Nalci, D.; Guler, M. O.; Akbulut, H. Surf. Coat. Tech. 2015, 271, 136. doi: 10.1016/j.surfcoat.2014.12.067

    14. [14]

      (14) Xu, J. K.; Du, Y.; Tian, Y. H.; Wang, C. X. Int. J. Optomechatronics 2020, 14 (1), 94. doi: 10.1080/15599612.2020.1857890

    15. [15]

      (15) Ju, Y.; Zhou, H.; Huang, Y. L.; Zhao, Y.; Deng, X.; Yang, Z. G.; Wang, F. J.; Gu, Q. Q.; Deng, G. L.; Zuo, H. Y. Nanoscale 2023, 15 (34), 13965. doi: 10.1039/D3NR02278A

    16. [16]

      (16) Son J. T. Electrochem. Commun. 2004, 6 (10), 990. doi: 10.1016/j.elecom.2004.07.007

    17. [17]

      (17) Kim, H.; Byun, D.; Chang, W.; Jung, H. G.; Choi, W. J. Mater. Chem. A 2017, 5 (47), 25077. doi: 10.1039/C7TA07898F

    18. [18]

      (18) Lu, G. Z.; Peng, W. X.; Zhang, Y. T.; Wang, X. Q.; Shi, X. X.; Song, D. W.; Zhang, H. Z.; Zhang, L. Q. Electrochim. Acta 2021, 368, 137639. doi: 10.1016/j.electacta.2020.137639

    19. [19]

      (19) Fan, Q.; Lei, L. X.; Yin, G.; Sun, Y. M. Chem. Commun. 2014, 50 (18), 2370. doi: 10.1039/C3CC48367C

    20. [20]

      (20) Verma, A.; Smith, K.; Santhanagopalan, S.; Abraham, D.; Yao, K. P.; Mukherjee, P. P. J. Electrochem. Soc. 2017, 164 (13), A3380. doi: 10.1149/2.1701713jes

    21. [21]

      (21) Luo, H.; Xu, C. Y.; Wang, B.; Jin, F.; Wang, L.; Liu, T.; Zhou, Y.; Wang, D. L. Electrochim. Acta 2019, 313, 10. doi: 10.1016/j.electacta.2019.05.018

    22. [22]

      (22) Pagani, F.; Döbeli, M.; Battaglia, C. Batteries Supercaps 2021, 4 (2), 316. doi: 10.1002/batt.202000159

    23. [23]

      (23) Chiang, C. Y.; Reddy, M. J.; Chu, P. P. Solid State Ion. 2004, 175 (1–4), 631. doi: 10.1016/j.ssi.2003.12.039

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    5. [5]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    8. [8]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    9. [9]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    10. [10]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    12. [12]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    13. [13]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    14. [14]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    15. [15]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

Metrics
  • PDF Downloads(2)
  • Abstract views(158)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return