Citation: Renjie Xue, Chao Ma, Jing He, Xuechao Li, Yanning Tang, Lifeng Chi, Haiming Zhang. Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230901. doi: 10.3866/PKU.WHXB202309011
-
Catassembly is a newly developed concept concerning the process of molecular assembly improved by a catalyst-assembler (catassembler). However, it has not been visualized in detail at the molecular level. To achieve the formation of highly complex structures with high efficiency and selectivity, a deeper understanding of catassembly is essential. In this study, we present the scanning tunneling microscopy (STM) characterization of a catassembly process within host-guest assembly. We utilize a metastable self-assembled network of 1,3,5-tris(4-carboxyphenyl)-benzene (BTB) at the liquid-solid interface between 1-octanoic acid and highly oriented pyrolytic graphite (HOPG). Different adsorption behaviors of low-concentration guest molecules (copper phthalocyanine (CuPc), and coronene (COR)) are contrastively analyzed during the host-guest assembly in both single-guest (COR/BTB or CuPc/BTB) and multi-guest molecule (COR&CuPc/BTB) systems. The spontaneous phase transition from a hexagonal to an oblique structure of BTB monolayers (high concentration, approximately 500 μmol∙L−1 in octanoic acid) provides an ideal metastable phase for studying the dynamic assembly process. In the host-guest assembly, the metastable BTB hexagonal phase serves as a host network and can be stabilized by co-assembling guest molecules under a negative bias voltage. However, the stability of the metastable phase varies with different guest molecules. We observe that the BTB metastable phase is more robust with COR guest molecules than with CuPc. In the CuPc/BTB system, we find that low-concentration CuPc (approximately 1.5 μmol∙L−1 in octanoic acid) can hardly co-assemble with BTB, leading to the gradual collapse of the metastable BTB networks into the oblique phase. The different stability of BTB metastable phase in the host-guest assembly is attributed to differences in the kinetics of trapping guest molecules. Guest COR molecules exhibit kinetic advantages over CuPc when assembling with host BTB networks under a negative sample bias. The lower trapping rate of CuPc hinders the formation of co-assembled BTB/CuPc networks. These differences in the dynamic behavior of the guest molecules are further explored in the research of catassembly. In a multi-guest molecule system (COR&CuPc/BTB), COR molecules are preferentially trapped by BTB hexagonal networks and can gradually be replaced by CuPc during continuous scanning. The more energetically stable structure of CuPc/BTB compared to COR/BTB rationalizes the exchange of the guest molecule and the evolution of the assembly phase. The involvement of COR significantly increases both the efficiency and quality of the CuPc/BTB assembly, serving as a catassembler. This observation provides insights into a complete catassembly process at the molecular level, enabling further investigations into the selectivity and efficiency of host-guest phenomena for potential applications in analysis and separation. Additionally, this work serves as a prototype for constructing highly complex 2D assembled monolayers.
-
-
[1]
(1) Yang, H.; Yuan, B.; Zhang, X.; Scherman, O. A. Acc. Chem. Res. 2014, 47, 2106. doi: 10.1021/ar500105t
-
[2]
(2) Li, J. Q.; Qian, Y. X.; Duan, W. B.; Zeng, Q. D. Chin. Chem. Lett. 2019, 30, 292. doi: 10.1016/j.cclet.2018.05.037
-
[3]
(3) Teyssandier, J.; Feyter, S.; Mali, K. S. Chem. Commun. 2016, 52, 11465. doi: 10.1039/c6cc05256h
-
[4]
(4) De Feyter, S.; Gesquiere, A.; Abdel-Mottaleb, M. M.; Grim, P. C. M.; De Schryver, F. C.; Meiners, C.; Sieffert, M.; Valiyaveettil, S.; Mullen, K. Acc. Chem. Res. 2000, 33, 520. doi: 10.1021/ar970040g
-
[5]
(5) De Feyter, S.; Grim, P. C. M.; van Esch, J.; Kellogg, R. M.; Feringa, B. L.; De Schryver, F. C. J. Phys. Chem. B 1998, 102, 8981. doi: 10.1021/jp973177x
-
[6]
(6) Xue, J. D.; Deng, K.; Liu, B.; Duan, W. B.; Zeng, Q. D.; Wang, C. RSC Adv. 2015, 5, 39291. doi: 10.1039/c5ra01517k
-
[7]
(7) Dai, H. L.; Yi, W. J.; Deng, K.; Wang, H.; Zeng, Q. D. ACS Appl. Mater. Intefaces 2016, 8, 21095. doi: 10.1021/acsami.6b06638
-
[8]
(8) Tahara, K.; Kaneko, K.; Katayama, K.; Itano, S.; Nguyen, C. H.; Amorim, D. D. D.; De Feyter, S.; Tobe, Y. Langmuir 2015, 31, 7032. doi: 10.1021/acs.langmuir.5b01507
-
[9]
(9) Meng, T.; Lu, Y. B.; Lei, P.; Li, S. J.; Deng, K.; Xiao, X. W.; Ogino, K.; Zeng, Q. D. Langmuir 2022, 38, 3568. doi: 10.1021/acs.langmuir.2c00188
-
[10]
(10) Banerjee, K.; Kumar, A.; Canova, F. F.; Kezilebieke, S.; Foster, A. S.; Liljeroth, P. J. Phys. Chem. C 2016, 120, 8772. doi: 10.1021/acs.jpcc.6b01638
-
[11]
(11) Yan, L. H.; Kuang, G. W.; Lin, N. Chem. Commun. 2018, 54, 10570. doi: 10.1039/c8cc04491k
-
[12]
(12) Steiner, C.; Fromm, L.; Gebhardt, J.; Liu, Y.; Heidenreich, A.; Hammer, N.; Gorling, A.; Kivala, M.; Maier, S. Nanoscale 2021, 13, 9798. doi: 10.1039/d0nr09140e
-
[13]
(13) Ciesielski, A.; Palma, C. A.; Bonini, M.; Samori, P. Adv. Mater. 2010, 22, 3506. doi: 10.1002/adma.201001582
-
[14]
(14) Yoshimoto, S.; Suto, K.; Tada, A.; Kobayashi, N.; Itaya, K. J. Am. Chem. Soc. 2004, 126, 8020. doi: 10.1021/ja048760n
-
[15]
(15) De Feyter, S.; De Schryver, F. C. Chem. Soc. Rev. 2003, 32, 393. doi: 10.1039/b206566p
-
[16]
(16) Kudernac, T.; Lei, S. B.; Elemans, J. A. A. W.; De Feyter, S. Chem. Soc. Rev. 2009, 38, 3505. doi: 10.1039/b708902n
-
[17]
(17) Mamdouh, W.; Kelly, R. E. A.; Dong, M. D.; Kantorovich, L. N.; Besenbacher, F. J. Am. Chem. Soc. 2008, 130, 695. doi: 10.1021/ja076832f
-
[18]
(18) Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Nature 2003, 424, 1029. doi: 10.1038/nature01915
-
[19]
(19) Ruben, M.; Payer, D.; Landa, A.; Comisso, A.; Gattinoni, C.; Lin, N.; Collin, J. P.; Sauvage, J. P.; De Vita, A.; Kern, K. J. Am. Chem. Soc. 2006, 128, 15644. doi: 10.1021/ja063601k
-
[20]
(20) Bellec, A.; Arrigoni, C.; Schull, G.; Douillard, L.; Fiorini-Debuisschert, C.; Mathevet, F.; Kreher, D.; Attias, A. J.; Charra, F. J. Chem. Phys. 2011, 134, 124702. doi: 10.1063/1.3569132
-
[21]
(21) Blunt, M. O.; Adisoejoso, J.; Tahara, K.; Katayama, K.; Van der Auweraer, M.; Tobe, Y.; De Feyter, S. J. Am. Chem. Soc. 2013, 135, 12068. doi: 10.1021/ja405585s
-
[22]
(22) Gutzler, R.; Sirtl, T.; Dienstmaier, J. F.; Mahata, K.; Heckl, W. M.; Schmittel, M.; Lackinger, M. J. Am. Chem. Soc. 2010, 132, 5084. doi: 10.1021/ja908919r
-
[23]
(23) Lei, P.; Zhao, L.; He, L.; Zhao, F. Y.; Xiao, X. W.; Tu, B.; Zeng, Q. D. Appl. Surf. Sci. 2021, 550, 149352. doi: 10.1016/j.apsusc.2021.149352
-
[24]
(24) Cometto, F. P.; Kern, K.; Lingenfelder, M. ACS Nano 2015, 9, 5544. doi: 10.1021/acsnano.5b01658
-
[25]
(25) Chan, Y.; Khan, S. B.; Mahmood, A.; Saleemi, A. S.; Lian, Z.; Ren, Y.; Zeng, X. M.; Lee, S. L. J. Phys. Chem. C 2020, 124, 815. doi: 10.1021/acs.jpcc.9b10537
-
[26]
(26) Cai, Z. F.; Zhan, G. L.; Daukiya, L.; Eyley, S.; Thielemans, W.; Severin, K.; De Feyter, S. J. Am. Chem. Soc. 2019, 141, 11404. doi: 10.1021/jacs.9b05265
-
[27]
(27) Lei, S. B.; Tahara, K.; De Schryver, F. C.; Van der Auweraer, M.; Tobe, Y.; De Feyter, S. Angew. Chem. Int. Ed. 2008, 47, 2964. doi: 10.1002/anie.200705322
-
[28]
(28) Palma, C. A.; Bjork, J.; Bonini, M.; Dyer, M. S.; Llanes-Pallas, A.; Bonifazi, D.; Persson, M.; Samori, P. J. Am. Chem. Soc. 2009, 131, 13062. doi: 10.1021/ja9032428
-
[29]
(29) Velpula, G.; Martin, C.; Daelemans, B.; Hennrich, G.; Van der Auweraer, M.; Mali, K. S.; De Feyter, S. Chem. Sci. 2021, 12, 13167. doi: 10.1039/d1sc02950a
-
[30]
(30) Wang, Y.; Lin, H. X.; Chen, L.; Ding, S. Y.; Lei, Z. C.; Liu, D. Y.; Cao, X. Y.; Liang, H. J.; Jiang, Y. B.; Tian, Z. Q. Chem. Soc. Rev. 2014, 43, 399. doi: 10.1039/c3cs60212e
-
[31]
(31) Zhang, H. L.; Wang, Y.; Zhang, H.; Liu, X. G.; Lee, A.; Huang, Q. L.; Wang, F.; Chao, J.; Liu, H. J.; Li, J.; et al. Nat. Commun. 2019, 10, 1006. doi: 10.1038/s41467-019-09004-4
-
[32]
(32) Nan, Z. A.; Wang, Y.; Chen, Z. X.; Yuan, S. F.; Tian, Z. Q.; Wang, Q. M. Commun. Chem. 2018, 1, 99. doi: 10.1038/s42004-018-0102-3
-
[33]
(33) Fang, Y.; Ivasenko, O.; Sanz-Matias, A.; Mali, K. S.; Tahara, K.; Tobe, Y.; De Feyter, S. Nanoscale 2023, 15, 4301. doi: 10.1039/d2nr06400f
-
[34]
(34) Steeno, R.; Minoia, A.; Lazzaroni, R.; Mali, K. S.; De Feyter, S. Chem. Commun. 2022, 58, 3138. doi: 10.1039/d1cc07206d
-
[35]
(35) Zhan, G.; Cai, Z. F.; Strutynski, K.; Yu, L.; Herrmann, N.; Martinez-Abadia, M.; Melle-Franco, M.; Mateo-Alonso, A.; Feyter, S. Nature 2022, 603, 835. doi: 10.1038/s41586-022-04409-6
-
[36]
(36) Mahmood, A.; Zeng, X. M.; Saleemi, A. S.; Cheng, K. Y.; Lee, S. L. Chem. Commun. 2020, 56, 8790. doi: 10.1039/d0cc01670e
-
[37]
(37) Wang, J.; Wang, L. M.; Lu, C.; Yan, H. J.; Wang, S. X.; Wang, D. RSC Adv. 2019, 9, 11659. doi: 10.1039/c9ra01493d
-
[38]
(38) Li, H.; Xu, X. G.; Shang, J.; Li, J. L.; Hu, X. Q.; Teo, B. K.; Wu, K. J. Phys. Chem. C 2012, 116, 21753. doi: 10.1021/jp303352h
-
[39]
(39) Xie, L.; Jiang, H. J.; Li, D. L.; Liu, M. X.; Ding, Y. Q.; Liu, Y. F.; Li, X.; Li, X. C.; Zhang, H. M.; Hou, Z. H.; et al. ACS Nano 2020, 14, 10680. doi: 10.1021/acsnano.0c05227
-
[40]
(40) Li, C.; Xu, Z.; Zhang, Y. J.; Li, J.; Xue, N.; Li, R. N.; Zhong, M. J.; Wu, T. H.; Wang, Y. F.; Li, N.; et al. Natl. Sci. Rev. 2023, 10, nwad088. doi: 10.1093/nsr/nwad088
-
[41]
(41) Deng, C. F.; Liu, Z. H.; Ma, C.; Zhang, H. M.; Chi, L. F. Langmuir 2020, 36, 5510. doi: 10.1021/acs.langmuir.0c00425
-
[42]
(42) Sahare, S.; Ghoderao, P.; Chan, Y.; Lee, S. L. Nanoscale 2023, 15, 1981. doi: 10.1039/d2nr05264d
-
[43]
(43) Zhang, X. M.; Zeng, Q. D.; Wang, C. RSC Adv. 2013, 3, 11351. doi: 10.1039/c3ra40473k
-
[44]
(44) Cometto, F.; Frank, K.; Stel, B.; Arisnabarreta, N.; Kern, K.; Lingenfelder, M. Chem. Commun. 2017, 53, 11430. doi: 10.1039/c7cc06597c
-
[45]
(45) Eder, G.; Kloft, S.; Martsinovich, N.; Mahata, K.; Schmittel, M.; Heckl, W. M.; Lackinger, M. Langmuir 2011, 27, 13563. doi: 10.1021/la203054k
-
[46]
(46) Lee, S.; Lin, C.; Cheng, K.; Chen, Y.; Chen, C. J. Phys. Chem. C. 2016, 120, 25505. doi: 10.1021/acs.jpcc.6b09538
-
[47]
-
[48]
(48) Wang, Y.; Miao, X. R.; Deng, W. L.; Brisse, R.; Jousselme, B.; Silly, F. Nanomaterials 2022, 12, 775. doi: 10.3390/nano12050775
-
[1]
-
-
[1]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[2]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[3]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[4]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[5]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[6]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[7]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[8]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[9]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[10]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[11]
Xiaxue Chen , Yuxuan Yang , Ruolin Yang , Yizhu Wang , Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019
-
[12]
Yajun Jian , Quanguo Zhai , Quan Gu , Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006
-
[13]
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
-
[14]
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
-
[15]
Donghui PAN , Yuping XU , Xinyu WANG , Lizhen WANG , Junjie YAN , Dongjian SHI , Min YANG , Mingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468
-
[16]
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
-
[17]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[18]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[19]
Haiying Wang , Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004
-
[20]
Yonghui Wang , Weilin Chen , Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(469)
- HTML views(30)