Citation: Feixue Gao,  Lu Zhao,  Xiangjian Shen,  Junlin Yang,  Yongjun Chen. Optimizing the Funding Allocation in Physical Chemistry, Improving the Grant Effectiveness of Science Foundation[J]. Acta Physico-Chimica Sinica, ;2024, 40(3): 230900. doi: 10.3866/PKU.WHXB202309009 shu

Optimizing the Funding Allocation in Physical Chemistry, Improving the Grant Effectiveness of Science Foundation

  • Corresponding author: Feixue Gao, gaofx@nsfc.gov.cn
  • Received Date: 7 September 2023
    Revised Date: 7 September 2023
    Accepted Date: 7 September 2023

  • This paper provides a comprehensive overview of the establishment and subsequent adjustment to the discipline codes of Physical Chemistry in China. In light of the research developments in Physical Chemistry over the past decade, the optimized reclassification into Catalysis & Surface Interface Chemistry and Chemical Theory & Mechanism, effective from 2018, plays an important role in advancing cutting-edge foundational researches and enhancing the grant effectiveness of science foundation. Constructive insights and recommendations are provided for further optimizing discipline allocation, serving as a valuable guide for shaping future development strategies within the field of Physical Chemistry.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      (3) Laidler, K. J. The World of Physical Chemistry; Oxford University Press:Oxford, UK, 1995.

    4. [4]

    5. [5]

    6. [6]

      (6) Pan, X.; Fan, Z.; Chen, W.; Ding, Y.; Luo, H.; Bao, X. Nat. Mater. 2007, 6 (7), 507. doi:10.1038/nmat1916

    7. [7]

      (7) Fu, Q.; Li, W.-X.; Yao, Y.; Liu, H.; Su, H.-Y.; Ma, D.; Gu, X.-K.; Chen, L.; Wang, Z.; Zhang, H.; et al. Science 2010, 328 (5982), 1141. doi:10.1126/science.1188267

    8. [8]

      (8) Jiao, F.; Li, J.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Li, M.; et al. Science 2016, 351 (6277), 1065. doi:10.1126/science.aaf1835

    9. [9]

      (9) Jiao, F.; Bai, B.; Li, G.; Pan, X.; Ye, Y.; Qu, S.; Xu, C.; Xiao, J.; Jia, Z.; Liu, W.; et al. Science 2023, 380 (6646), 727. doi:10.1126/science.adg2491

    10. [10]

      (10) Chen, R.; Ren, Z.; Liang, Y.; Zhang, G.; Dittrich, T.; Liu, R.; Liu, Y.; Zhao, Y.; Pang, S.; An, H.; et al. Nature 2022, 610 (7931), 296. doi:10.1038/s41586-022-05183-1

    11. [11]

      (11) Zhang, X.; Zhang, M.; Deng, Y.; Xu, M.; Artiglia, L.; Wen, W.; Gao, R.; Chen, B.; Yao, S.; Zhang, X.; et al. Nature 2021, 589 (7842), 396. doi:10.1038/s41586-020-03130-6

    12. [12]

      (12) Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y.-W.; et al. Nature 2017, 544 (7648), 80. doi:10.1038/nature21672

    13. [13]

      (13) Yao, S.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen, B.; et al. Science 2017, 357 (6349), 389. doi:10.1126/science.aah4321

    14. [14]

      (14) Lin, L.; Yao, S.; Gao, R.; Liang, X.; Yu, Q.; Deng, Y.; Liu, J.; Peng, M.; Jiang, Z.; Li, S.; et al. Nat. Nanotechnol. 2019, 14 (4), 354. doi:10.1038/s41565-019-0366-5

    15. [15]

      (15) Qin, X. T.; Xu, M.; Guan, J. X.; Feng, L.; Xu, Y.; Zheng, L.; R.; Wang, M.; Zhao, J.-W.; Chen, J.-L.; Zhang, J.; et al. Nat. Energy 2023, in Press.

    16. [16]

      (16) Dong, C.; Gao, Z.; Li, Y.; Peng, M.; Wang, M.; Xu, Y.; Li, C.; Xu, M.; Deng, Y.; Qin, X.; et al. Nat. Catal. 2022, 5 (6), 485. doi:10.1038/s41929-022-00769-4

    17. [17]

      (17) Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3 (8), 634. doi:10.1038/nchem.1095

    18. [18]

      (18) Hu, S.; Li, W.-X. Science 2021, 374 (6573), 1360. doi:10.1126/science.abi9828

    19. [19]

      (19) Li, J.; Gao, Z. R.; Lin, Q.-F.; Liu, C.; Gao, F.; Lin, C.; Zhang, S.; Deng, H.; Mayoral, A.; Fan, W.; et al. Science 2023, 379, 283. doi:10.1126/science.ade1771

    20. [20]

      (20) Guo, W.; Yin, J.; Xu, Z.; Li, W.; Peng, Z.; Weststrate, C. J.; Yu, X.; He, Y.; Cao, Z.; Wen, X.; et al. Science 2022, 375 (6585), 1188. doi:10.1126/science.abi4407

    21. [21]

      (21) Tian, Y.; Hong, J.; Cao, D.; You, S.; Song, Y.; Cheng, B.; Wang, Z.; Guan, D.; Liu, X.; Zhao, Z.; et al. Science 2022, 377 (6603), 315. doi:10.1126/science.abo0823.

    22. [22]

      (22) Zheng, W.; Bian, K.; Chen, X.; Shen, Y.; Zhang, S.; Stöhr, R.; Denisenko, A.; Wrachtrup, J.; Yang, S.; Jiang, Y. Nat. Phys. 2022, 18, 1317. doi:10.1038/s41567-022-01719-4

    23. [23]

      (23) Peng, J.; Guo, J.; Ma, R.; Jiang, Y. Surf. Sci. Rep. 2022, 77 (1), 100549. doi:10.1016/j.surfrep.2021.100549

    24. [24]

      (24) Ma, R.; Cao, D.; Zhu, C.; Tian, Y.; Peng, J.; Guo, J.; Chen, J.; Li, X.-Z.; Francisco, J. S.; Zeng, X. C.; et al. Nature 2020, 577 (7788), 60. doi:10.1038/s41586-019-1853-4

    25. [25]

      (25) Zhou, X.; Yao, D.; Hua, W.; Huang, N.; Chen, X.; Li, L.; He, M.; Zhang, Y.; Guo, Y.; Xiao, S.; et al. Proc. Natl. Acad. Sci. USA 2020, 117 (11), 5617. doi:10.1073/pnas.1917941117

    26. [26]

      (26) Zhao, M.; Chen, Y.; Wang, K.; Zhang, Z.; Streit, J. K.; Fagan, J. A.; Tang, J.; Zheng, M.; Yang, C.; Zhu, Z.; et al. Science 2020, 368 (6493), 878. doi:10.1126/science.aaz7435

    27. [27]

    28. [28]

      (28) Zhang, F.; Yang, M.; Xu, X.; Liu, X.; Liu, H.; Jiang, L.; Wang, S. Nat. Mater. 2022, 21 (12), 1357. doi:10.1038/s41563-022-01391-2

    29. [29]

      (29) Wang, Y.-H.; Zheng, S.; Yang, W.-M.; Zhou, R.-Y.; He, Q.-F.; Radjenovic, P.; Dong, J.-C.; Li, S.; Zheng, J.; Yang, Z.-L.; et al. Nature 2021, 600 (7887), 81. doi:10.1038/s41586-021-04068-z

    30. [30]

      (30) Dong, J.-C.; Zhang, X.-G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z.-L.; Wu, D.-Y.; Feliu, J. M.; Williams, C. T.; et al. Nat. Energy 2018, 4 (1), 60. doi:10.1038/s41560-018-0292-z

    31. [31]

      (31) Li, C.-Y.; Le, J.-B.; Wang, Y.-H.; Chen, S.; Yang, Z.-L.; Li, J.-F.; Cheng, J.; Tian, Z.-Q. Nat. Mater. 2019, 18 (7), 697. doi:10.1038/s41563-019-0356-x

    32. [32]

      (32) Li, W.; Yin, Z.; Gao, Z.; Wang, G.; Li, Z.; Wei, F.; Wei, X.; Peng, H.; Hu, X.; Xiao, L.; et al. Nat. Energy 2022, 7 (9), 835. doi:10.1038/s41560-022-01092-9

    33. [33]

      (33) Yuan, D.; Yu, S.; Chen, W.; Sang, J.; Luo, C.; Wang, T.; Xu, X.; Casavecchia, P.; Wang, X.; Sun, Z.; et al. Nat. Chem. 2018, 10 (6), 653. doi:10.1038/s41557-018-0032-9

    34. [34]

      (34) Yuan, D.; Guan, Y.; Chen, W.; Zhao, H.; Yu, S.; Luo, C.; Tan, Y.; Xie, T.; Wang, X.; Sun, Z.; et al. Science 2018, 362 (6420), 1289. doi:10.1126/science.aav1356

    35. [35]

      (35) Yang, T.; Huang, L.; Xiao, C.; Chen, J.; Wang, T.; Dai, D.; Lique, F.; Alexander, M. H.; Sun, Z.; Zhang, D. H.; et al. Nat. Chem. 2019, 11 (8), 744. doi:10.1038/s41557-019-0280-3

    36. [36]

      (36) Xie, Y.; Zhao, H.; Wang, Y.; Huang, Y.; Wang, T.; Xu, X.; Xiao, C.; Sun, Z.; Zhang, D. H.; Yang, X. Science 2020, 368 (6492), 767. doi:10.1126/science.abb1564

    37. [37]

      (37) Chen, W.; Wang, R.; Yuan, D.; Zhao, H.; Luo, C.; Tan, Y.; Li, S.; Zhang, D. H.; Wang, X.; Sun, Z.; et al. Science 2021, 371 (6532), 936. doi:10.1126/science.abf4205

    38. [38]

      (38) Wang, X.; Yang, X. A. Science 2021, 374 (6570), 938. doi:10.1126/science.abm5536

    39. [39]

      (39) Wang, Y.; Huang, J.; Wang, W.; Du, T.; Xie, Y.; Ma, Y.; Xiao, C.; Zhang, Z.; Zhang, D. H.; Yang, X. Science 2023, 379 (6628), 191. doi:10.1126/science.ade7471

    40. [40]

      (40) Zhang, Z.; Liu, X.; Chen, Z.; Zheng, H.; Yan, K.; Liu, J. A. J. Chem. Phys. 2017, 147 (3), 034109. doi:10.1063/1.4991621

    41. [41]

      (41) Liu, J.; He, X.; Wu, B. Acc. Chem. Res. 2021, 54 (23), 4215. doi:10.1021/acs.accounts.1c00511

    42. [42]

      (42) He, X.; Wu, B.; Shang, Y.; Li, B.; Cheng, X.; Liu, J. WIREs Comput. Mol. Sci. 2022, 12 (6), e1619. doi:10.1002/wcms.1619

    43. [43]

      (43) Wang, X.; Jiang, S.; Hu, W.; Ye, S.; Wang, T.; Wu, F.; Yang, L.; Li, X.; Zhang, G.; Chen, X. J. Am. Chem. Soc. 2022, 144 (35), 16069. doi:10.1021/jacs.2c06288

    44. [44]

      (44) Zhang, B.; Zhang, X.; Du, W.; Song, Z.; Zhang, G.; Zhang, G.; Wang, Y.; Chen, X.; Jiang, J.; Luo, Y. Proc. Natl. Acad. Sci. USA 2022, 119 (41), e2212711119. doi:10.1073/pnas.2212711119

    45. [45]

      (45) Zhu, Q.; Zhang, F.; Huang, Y.; Xiao, H.; Zhao, L.; Zhang, X.; Song, T.; Tang, X.; Li, X.; He, G.; et al. Natl. Sci. Rev. 2022, 9 (10), nwac190. doi:10.1093/nsr/nwac190

    46. [46]

      (46) Zhu, Q.; Huang, Y.; Zhou, D. L.; Zhao, L. Y; Guo, L. L.; Yang, R. Y.; Sun, Z. X.; Luo, M.; Zhang, F.; Xiao, H. Y.; et al. Nat. Synth. 2023, in Press.

    47. [47]

      (47) Zhang, Y.; Xu, X.; Goddard, W. A. Proc. Natl. Acad. Sci. USA 2009, 106 (13), 4963. doi:10.1073/pnas.0901093106

    48. [48]

      (48) Liu, Z.; Chen, Z.; Xi, J.; Xu, X. Natl. Sci. Rev. 2020, 7 (6), 1036. doi:10.1093/nsr/nwaa051

    49. [49]

      (49) Liu, Z.; Chen, Z.; Xu, X. CCS Chem. 2021, 3 (3), 904. doi:10.31635/ccschem.020.202000285

    50. [50]

      (50) Yang, J.; Tu, B.; Zhang, G.; Liu, P.; Hu, K.; Wang, J.; Yan, Z.; Huang, Z.; Fang, M.; Hou, J.; et al. Nat. Nanotechnol. 2022, 17 (6), 622. doi:10.1038/s41565-022-01110-7

    51. [51]

      (51) Cao, G.; Liang, J.; Guo, Z.; Yang, K.; Wang, G.; Wang, H.; Wan, X.; Li, Z.; Bai, Y.; Zhang, Y.; et al. Nature 2023, 619 (7968), 73. doi:10.1038/s41586-023-06082-9

    52. [52]

  • 加载中
    1. [1]

      Xu Liu Chengfang Liu Jie Huang Xiangchun Li Wenyong Lai . Research on the Application of Diversified Teaching Models in the Teaching of Physical Chemistry. University Chemistry, 2024, 39(8): 112-118. doi: 10.3866/PKU.DXHX202402021

    2. [2]

      Bing Sun . Practice of Ideological and Political Education in Physical Chemistry Courses for Non-Chemistry Majors. University Chemistry, 2024, 39(8): 28-35. doi: 10.3866/PKU.DXHX202311080

    3. [3]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    4. [4]

      Tongqi Ye Qi Wang Yuewen Ye Yanqing Wang Hongyang Zhou Xianghua Kong . Reflection on the Reform of Physical Chemistry Teaching under the Background of “Intelligent Chemical Engineering”. University Chemistry, 2024, 39(3): 167-173. doi: 10.3866/PKU.DXHX202308116

    5. [5]

      Hongmei Zhao Ziqiang Lu Song Li Xingyu Li Chengting Zi Xingli Fan Xiangdong Qin . Exploration and Practice of Physical Chemistry Teaching under the Guidance of Course Ideological and Political Education. University Chemistry, 2024, 39(3): 210-217. doi: 10.3866/PKU.DXHX202309006

    6. [6]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    7. [7]

      Congyi Wu . Advice for Young Teachers to Promote Teaching Level of Physical Chemistry. University Chemistry, 2024, 39(11): 15-19. doi: 10.3866/PKU.DXHX202402054

    8. [8]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    9. [9]

      Yanling Luo Xuejie Qi Rui Shen Xuling Peng Xiaoyan Han . Design and Implementation of Ideological and Political Education in the Physical Chemistry Course at Traditional Chinese Medicine Universities: A Case Study of the Phase Diagram of Water. University Chemistry, 2024, 39(11): 9-14. doi: 10.3866/PKU.DXHX202402003

    10. [10]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    11. [11]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    12. [12]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    13. [13]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    14. [14]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    15. [15]

      Haiying Jiang Huilin Guo Yongliang Cheng Tongyu Xu Jiquan Liu Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091

    16. [16]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    17. [17]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    18. [18]

      Youjun Fan Dandan Cai Wei Chen Jianhua Qiu . Exploration and Practice of Ideological and Political Education Reform in Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 119-124. doi: 10.3866/PKU.DXHX202310123

    19. [19]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    20. [20]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

Metrics
  • PDF Downloads(5)
  • Abstract views(327)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return