Citation: Rui Yang, Hui Li, Qingfei Meng, Wenjie Li, Jiliang Wu, Yongjin Fang, Chi Huang, Yuliang Cao. Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230805. doi: 10.3866/PKU.WHXB202308053
-
The Li/CrOx battery has gained attention in the construction of smart cities, aerospace, and national defense and military applications due to its high energy density and excellent rate performance. Developing a Li/CrOx battery with high specific capacity, high energy density, excellent magnification performance, long storage life, and low cost is a primary goal. In this pursuit, the role of the electrolyte in battery performance for Li/CrOx primary batteries cannot be underestimated. However, current research on Li/CrOx primary batteries has primarily focused on electrode materials, with limited attention given to the electrolyte. Propylene carbonate (PC) solvent possesses a wide temperature range for melting and boiling points (−48.8 to 242 °C) and a high dielectric constant of 64.92. As a result, it is frequently used as a key component in electrolytes that operate under extreme temperatures and high rates. Nevertheless, its use in Li/CrOx batteries remains limited. Developing electrolyte systems based on PC with a wide temperature range and high dielectric constant is crucial for the advancement of high-power and environmentally robust lithium primary batteries. In this study, we investigated the discharge behavior of CrOx in PC-based electrolytes and identified suitable electrolyte systems for high-current discharge, specifically a 1 mol∙L−1 LiTFSI PC : DOL (1,3-dioxolane) = 1 : 2 ratio. We also demonstrated that the coordination number of solvent molecules in the solvation sheath layer around Li+ ions and the solvated structure involved in coordination significantly influence the rate performance of Li/CrOx battery systems in PC-based electrolytes. Reducing the coordination number of solvent molecules facilitates the desolvation behavior of solvated Li+, thereby enhancing the desolvation process on the material surface. Furthermore, lowering the coordination number of solvent molecules promotes the involvement of anions in the solvated sheath structure. When the coordination number of solvent molecules falls below 3, it tends to form a solvated coordination structure involving anions with a higher lowest unoccupied molecular orbital (LUMO) level. This enables anions to participate in forming a solid electrolyte interface (SEI), resulting in a thinner and denser SEI film that significantly improves battery performance. Ultimately, modifying the coordination number for PC-based electrolytes is a practical and effective approach to enhance the rate performance of solvated sheath structures. The coordination number and the solvated sheath structure of Li+ in PC-based electrolytes have a profound impact on the high-current-discharge performance of the Li/CrOx battery system. A lower coordination number and the participation of anions in the solvated sheath structure effectively accommodate the high-rate discharge characteristics of the Li/CrOx battery. Among several selected electrolyte solvents, an electrolyte with DOL (a cyclic ether) and PC reduces the solvent’s coordination number to less than four, thereby enabling high-rate discharge. Understanding these principles is crucial for advancing the application of PC-based electrolytes in high-rate Li/CrOx battery systems.
-
-
[1]
(1) Zhang, K.; Han, X.; Hu, Z.; Zhang, X.; Tao, Z.; Chen, J. Chem. Soc. Rev. 2015, 44 (3), 699. doi: 10.1039/c4cs00218k
-
[2]
(2) Sayahpour, B.; Hirsh, H.; Bai, S.; Schorr, N. B.; Lambert, T. N.; Mayer, M.; Bao, W.; Cheng, D.; Zhang, M.; Leung, K.; et al. Adv. Energy Mater. 2021, 12 (5) 2103196. doi: 10.1002/aenm.202103196
-
[3]
(3) Liu, J.; Wang, Z.; Li, H.; Huang, X. Solid State Ionics 2006, 177 (26), 2675. doi: 10.1016/j.ssi.2006.05.017
-
[4]
(4) Feng, X.-Y.; Ding, N.; Wang, L.; Ma, X.-H.; Li, Y.-M.; Chen, C.-H. J. Power Sources 2013, 222, 184. doi: 10.1016/j.jpowsour.2012.08.061
-
[5]
(5) Song, S. H.; Alonso, J. A. ACS Appl. Mater. Interfaces 2021, 13 (46), 55172. doi: 10.1021/acsami.1c17414
-
[6]
(6) Xu, C.; Yang, Y.; Wang, H.; Xu, B.; Li, Y.; Tan, R.; Duan, X.; Wu, D.; Zhuo, M.; Ma, J. Chem. Asian J. 2020, 15 (22), 3584. doi: 10.1002/asia.202000851
-
[7]
(7) Fu, A.; Xiao, Y.; Jian, J.; Huang, L.; Tang, C.; Chen, X.; Zou, Y.; Wang, J.; Yang, Y.; Zheng, J. ACS Appl. Mater. Interfaces 2021, 13 (48), 57470. doi: 10.1021/acsami.1c19016
-
[8]
(8) Yang, M.; Chen, K.; Li, H.; Cao, Y.; Yang, H.; Ai, X. Adv. Funct. Mater. 2023. doi: 10.1002/adfm.202306828
-
[9]
(9) Liang, H.-J.; Su, M.-Y.; Zhao, X.-X.; Gu, Z.-Y.; Yang, J.-L.; Guo, W.; Liu, Z.-M.; Zhang, J.-P.; Wu, X.-L. Sci. China-Chem. 2023, 66 (7), 1982. doi: 10.1007/s11426-023-1638-0
-
[10]
-
[11]
-
[12]
-
[13]
(13) Nilsson, V.; Bernin, D.; Brandell, D.; Edstrom, K.; Johansson, P. ChemPhysChem 2020, 21 (11), 1166. doi: 10.1002/cphc.202000153
-
[14]
(14) Liu, X.; Shen, X.; Luo, L.; Zhong, F.; Ai, X.; Yang, H.; Cao, Y. ACS Energy Lett. 2021, 6 (12), 4282. doi: 10.1021/acsenergylett.1c02194
-
[15]
(15) Sethurajan, A. K.; Krachkovskiy, S. A.; Halalay, I. C.; Goward, G. R.; Protas, B. J. Phys. Chem. B 2015, 119 (37), 12238. doi: 10.1021/acs.jpcb.5b04300
-
[16]
(16) Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Nat. Energy 2019, 4 (4), 269. doi: 10.1038/s41560-019-0336-z
-
[17]
(17) Zhang, X.-Q.; Chen, X.; Hou, L.-P.; Li, B.-Q.; Cheng, X.-B.; Huang, J.-Q.; Zhang, Q. ACS Energy Lett. 2019, 4 (2), 411. doi: 10.1021/acsenergylett.8b02376
-
[1]
-
-
[1]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[2]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[3]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[4]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[5]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[6]
Qiying Xia , Guokui Liu , Yunzhi Li , Yaoyao Wei , Xia Leng , Guangli Zhou , Aixiang Wang , Congcong Mi , Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007
-
[7]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[8]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[9]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[10]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[11]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[12]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[13]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[14]
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
-
[15]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[16]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[17]
Yanxin Wang , Hongjuan Wang , Yuren Shi , Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005
-
[18]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[19]
Bingliang Li , Yuying Han , Dianyang Li , Dandan Liu , Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070
-
[20]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(516)
- HTML views(55)