Citation: Rui Yang,  Hui Li,  Qingfei Meng,  Wenjie Li,  Jiliang Wu,  Yongjin Fang,  Chi Huang,  Yuliang Cao. Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230805. doi: 10.3866/PKU.WHXB202308053 shu

Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery

  • Corresponding author: Chi Huang,  Yuliang Cao, 
  • Received Date: 31 August 2023
    Revised Date: 27 September 2023
    Accepted Date: 6 October 2023

    Fund Project: The project was supported by the Defense Industrial Technology Development Program (JCKY2021211B014).

  • The Li/CrOx battery has gained attention in the construction of smart cities, aerospace, and national defense and military applications due to its high energy density and excellent rate performance. Developing a Li/CrOx battery with high specific capacity, high energy density, excellent magnification performance, long storage life, and low cost is a primary goal. In this pursuit, the role of the electrolyte in battery performance for Li/CrOx primary batteries cannot be underestimated. However, current research on Li/CrOx primary batteries has primarily focused on electrode materials, with limited attention given to the electrolyte. Propylene carbonate (PC) solvent possesses a wide temperature range for melting and boiling points (−48.8 to 242 °C) and a high dielectric constant of 64.92. As a result, it is frequently used as a key component in electrolytes that operate under extreme temperatures and high rates. Nevertheless, its use in Li/CrOx batteries remains limited. Developing electrolyte systems based on PC with a wide temperature range and high dielectric constant is crucial for the advancement of high-power and environmentally robust lithium primary batteries. In this study, we investigated the discharge behavior of CrOx in PC-based electrolytes and identified suitable electrolyte systems for high-current discharge, specifically a 1 mol∙L−1 LiTFSI PC : DOL (1,3-dioxolane) = 1 : 2 ratio. We also demonstrated that the coordination number of solvent molecules in the solvation sheath layer around Li+ ions and the solvated structure involved in coordination significantly influence the rate performance of Li/CrOx battery systems in PC-based electrolytes. Reducing the coordination number of solvent molecules facilitates the desolvation behavior of solvated Li+, thereby enhancing the desolvation process on the material surface. Furthermore, lowering the coordination number of solvent molecules promotes the involvement of anions in the solvated sheath structure. When the coordination number of solvent molecules falls below 3, it tends to form a solvated coordination structure involving anions with a higher lowest unoccupied molecular orbital (LUMO) level. This enables anions to participate in forming a solid electrolyte interface (SEI), resulting in a thinner and denser SEI film that significantly improves battery performance. Ultimately, modifying the coordination number for PC-based electrolytes is a practical and effective approach to enhance the rate performance of solvated sheath structures. The coordination number and the solvated sheath structure of Li+ in PC-based electrolytes have a profound impact on the high-current-discharge performance of the Li/CrOx battery system. A lower coordination number and the participation of anions in the solvated sheath structure effectively accommodate the high-rate discharge characteristics of the Li/CrOx battery. Among several selected electrolyte solvents, an electrolyte with DOL (a cyclic ether) and PC reduces the solvent’s coordination number to less than four, thereby enabling high-rate discharge. Understanding these principles is crucial for advancing the application of PC-based electrolytes in high-rate Li/CrOx battery systems.
  • 加载中
    1. [1]

      (1) Zhang, K.; Han, X.; Hu, Z.; Zhang, X.; Tao, Z.; Chen, J. Chem. Soc. Rev. 2015, 44 (3), 699. doi: 10.1039/c4cs00218k

    2. [2]

      (2) Sayahpour, B.; Hirsh, H.; Bai, S.; Schorr, N. B.; Lambert, T. N.; Mayer, M.; Bao, W.; Cheng, D.; Zhang, M.; Leung, K.; et al. Adv. Energy Mater. 2021, 12 (5) 2103196. doi: 10.1002/aenm.202103196

    3. [3]

      (3) Liu, J.; Wang, Z.; Li, H.; Huang, X. Solid State Ionics 2006, 177 (26), 2675. doi: 10.1016/j.ssi.2006.05.017

    4. [4]

      (4) Feng, X.-Y.; Ding, N.; Wang, L.; Ma, X.-H.; Li, Y.-M.; Chen, C.-H. J. Power Sources 2013, 222, 184. doi: 10.1016/j.jpowsour.2012.08.061

    5. [5]

      (5) Song, S. H.; Alonso, J. A. ACS Appl. Mater. Interfaces 2021, 13 (46), 55172. doi: 10.1021/acsami.1c17414

    6. [6]

      (6) Xu, C.; Yang, Y.; Wang, H.; Xu, B.; Li, Y.; Tan, R.; Duan, X.; Wu, D.; Zhuo, M.; Ma, J. Chem. Asian J. 2020, 15 (22), 3584. doi: 10.1002/asia.202000851

    7. [7]

      (7) Fu, A.; Xiao, Y.; Jian, J.; Huang, L.; Tang, C.; Chen, X.; Zou, Y.; Wang, J.; Yang, Y.; Zheng, J. ACS Appl. Mater. Interfaces 2021, 13 (48), 57470. doi: 10.1021/acsami.1c19016

    8. [8]

      (8) Yang, M.; Chen, K.; Li, H.; Cao, Y.; Yang, H.; Ai, X. Adv. Funct. Mater. 2023. doi: 10.1002/adfm.202306828

    9. [9]

      (9) Liang, H.-J.; Su, M.-Y.; Zhao, X.-X.; Gu, Z.-Y.; Yang, J.-L.; Guo, W.; Liu, Z.-M.; Zhang, J.-P.; Wu, X.-L. Sci. China-Chem. 2023, 66 (7), 1982. doi: 10.1007/s11426-023-1638-0

    10. [10]

    11. [11]

    12. [12]

    13. [13]

      (13) Nilsson, V.; Bernin, D.; Brandell, D.; Edstrom, K.; Johansson, P. ChemPhysChem 2020, 21 (11), 1166. doi: 10.1002/cphc.202000153

    14. [14]

      (14) Liu, X.; Shen, X.; Luo, L.; Zhong, F.; Ai, X.; Yang, H.; Cao, Y. ACS Energy Lett. 2021, 6 (12), 4282. doi: 10.1021/acsenergylett.1c02194

    15. [15]

      (15) Sethurajan, A. K.; Krachkovskiy, S. A.; Halalay, I. C.; Goward, G. R.; Protas, B. J. Phys. Chem. B 2015, 119 (37), 12238. doi: 10.1021/acs.jpcb.5b04300

    16. [16]

      (16) Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Nat. Energy 2019, 4 (4), 269. doi: 10.1038/s41560-019-0336-z

    17. [17]

      (17) Zhang, X.-Q.; Chen, X.; Hou, L.-P.; Li, B.-Q.; Cheng, X.-B.; Huang, J.-Q.; Zhang, Q. ACS Energy Lett. 2019, 4 (2), 411. doi: 10.1021/acsenergylett.8b02376

  • 加载中
    1. [1]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    2. [2]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    3. [3]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    17. [17]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    18. [18]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    19. [19]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    20. [20]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

Metrics
  • PDF Downloads(0)
  • Abstract views(516)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return